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Abstract 

The AASHTOWare Pavement ME Design (PMED) is a novel design method for new and 

rehabilitated pavement designs based on mechanistic-empirical design principles. The design 

process includes several empirical models calibrated with pavement performance data from 

pavement sections throughout the United States. Improved accuracy of the design process requires 

that the models be calibrated to local conditions. Therefore, the objective of this study was to 

implement the AASHTOWare PMED software for rehabilitated pavement design by performing 

local calibration for state-managed roads in Kansas, New Jersey, and Maine. Transfer functions 

for translating mechanistic pavement responses into visible distresses embedded in the 

AASHTOWare PMED software were locally calibrated to eliminate bias and reduce the standard 

error for rehabilitated pavements in Kansas and New York. Calibration was performed using 

version 2.5 and then verified with version 2.6.2.2, which was released in September 2022. 

Rehabilitated pavement sections included asphalt concrete (AC) over AC in Kansas and the New 

England region and jointed plain concrete pavement (JPCP) sections in Kansas. Because the 

PMED software requires periodic recalibration of the prediction models to account for 

improvements in the models, changes in agency design and construction strategies, and updates in 

performance data, this study also developed an automated technique for calibrating the 

AASHTOWare PMED software performance models. This automated methodology incorporated 

robust sampling techniques to verify calibrated PMED models. In addition, statistical equivalence 

testing was incorporated to ensure PMED-predicted performance results tended to agree with the 

in-situ data. A comparison of results for the AASHTOWare PMED versions 2.5 and 2.6.2.2 

showed that most predicted distress values in Kansas remained the same, except for the predicted 

AC total fatigue cracking, specifically asphalt bottom-up fatigue cracking. For both distress types, 

slightly higher values were obtained with version 2.6.2.2. Results of three candidate crack tests 

showed that IDEAL-CT test results can be used as cracking-resistance criterion for mixtures in 

Kansas. The rehabilitation models were also successfully calibrated for the New England region.   
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Chapter 1: Introduction 

State highway agencies in the United States have predominantly used the American 

Association of State Highway and Transportation Officials (AASHTO) Guide for Design of 

Pavement Structures (AASHTO, 1993) and the associated DARWin software to design new and 

rehabilitated highway pavements. These design methodologies, which are empirical in nature, 

were developed based on field performance data obtained from the American Association of State 

Highway Officials (AASHO) Road Test conducted in the late 1950s (Huang, 2003). Although the 

1993 AASHTO design guide contains state-of-the-practice refinements in material input 

parameters and design procedures, an update was warranted to incorporate the principles of 

engineering mechanics in pavement design (Khanum, 2005). To implement an improved design 

guide for new and rehabilitated pavements, a new mechanistic-empirical pavement design guide 

(MEPDG) and corresponding software were developed through the National Cooperative 

Highway Research Program (NCHRP) 1-37A project. The MEPDG considers relevant input 

parameters, such as traffic, climate, and pavement structure material properties, and utilizes the 

theories of mechanics to assess pavement performance (Li et al., 2011). 

The mechanistic portion of the MEPDG design guide refers to application of the theory of 

engineering mechanics to estimate pavement stress and strain responses based on design inputs 

and then use those responses to compute incremental damage over time (Robbins et al., 2017). 

Cumulative damage is then converted to typical pavement distresses via transfer functions 

embedded in the software. These transfer functions are empirically calibrated with pavement 

distress measurements on in-service sections (Michigan Department of Transportation, 2021).  

 1.1 Background 

The NCHRP program of the National Academy of Science developed a user-friendly 

procedure for executing mechanistic-empirical (M-E) design while accounting for local 

environmental conditions, local highway materials, and actual highway traffic distribution using 

axle load spectra (NCHRP, 2004). The first edition of the MEPDG (software version 0.7) was 

released in 2004. Following this release, another NCHRP study was conducted under project 1-40 

to investigate the design guide’s underlying assumption, evaluate engineering reasonableness, and 



2 

implement the M-E approach for designing highway pavements (Ceylan, 2015). The outcomes of 

this effort were included in the introduction of the MEPDG software version 1.1 and a performance 

prediction model calibration guide. Since its inception, the MEPDG software underwent several 

improvements (versions) and was later adopted by AASHTO and incorporated into the 

AASHTOWare Pavement ME Design (PMED) software. AASHTOWare Pavement ME version 

2.6.2.2 is the latest version as reported in Chapter 6. In this part of the study, version 2.5 of the 

AASHTOWare series was used (Islam, Hossain, Jones, Bose et al., 2019). 

Transfer functions in the PMED software were calibrated using the Long-Term Pavement 

Program (LTPP) sections as a representative database of in-service pavement sections throughout 

North America (Robbins et al., 2017). Even though the nationally calibrated prediction models of 

the software are reflective of national-level design practices, these models may not be accurate 

enough for routine pavement design for a particular state or region. Since design and construction 

practices, pavement materials, and climatic conditions vary throughout the country, prediction 

models in the PMED software must be calibrated for a specific state or region. Without this 

calibration the new guide will be of limited use for design purposes. 

Calibration refers to the process through which the bias or residual error and the standard 

error are minimized between the observed and predicted pavement distress values (Kim et al., 

2011). This process includes verification of nationally calibrated factors, calibration of prediction 

model coefficients, and validation of the performance models. Bias refers to the average over or 

under prediction of the performance models compared to the observed distress, or International 

Roughness Index (IRI) values. A biased model in the AASHTOWare PMED software will produce 

over-designed or under-designed pavements (NCHRP, 2009). Another objective of model 

calibration is to increase prediction accuracy since lack of precision in the model leads to 

ineffective design of pavement sections and premature failures.  

The local calibration guide for AASHTOWare PMED defines the standard error of 

estimate (Se) as the standard deviation of residual errors for pavement sections included in the 

calibration dataset for each prediction model. The standard error is usually obtained by taking the 

positive square root of the variance of the statistic. The local calibration guide for the 

AASHTOWare Pavement ME lists four components of the Se. The first component pertains to 



3 

measurement errors associated with distress or smoothness measurements in the field. The second 

component is an input error, which is the underestimation or overestimation of certain input 

parameters required by the method. The third component is deficiencies in the transfer functions 

within the AASHTOWare PMED software, while the fourth component is pure error. Pure error 

is dependent on the input level, distress type, and prediction equation. Figure 1.1 presents various 

scenarios of bias and standard error (Haider et al., 2014). 

 

 
Figure 1.1: Bias and Se (Precision) for Model Calibrations 

Source: Haider et al., 2014 

 

Since the release of this methodology, several states have attempted local calibration and 

software implementation for day-to-day pavement design. In 2014, NCHRP synthesis 457 study 
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surveyed 57 highway transportation agencies across North America. Survey results showed that 

only three agencies had implemented MEDPG, and 46 agencies were in the process of evaluating 

MEPDG models. In addition, 12 agencies confirmed that relevant MEPDG prediction models were 

being calibrated to local conditions. In 2017, the National Center for Asphalt Technology (NCAT) 

conducted a detailed review of highway agencies’ local calibration studies for flexible pavements 

and listed the methodologies and results of those efforts. Previous researchers listed several PMED 

software implementation challenges, including the complex nature of PMED software, data needs, 

field investigation and laboratory testing to characterize input parameters, local calibration of 

performance models, and resource constraints (Buch et al., 2013).  

 1.2 Problem Statement 

The Kansas Department of Transportation (KDOT) is transitioning from the 1993 

AASHTO pavement design guide to AASHTOWare PMED. Kansas State University has been 

working on the evaluation and local calibration of performance models in the PMED software for 

new/reconstructed pavements for Kansas (Islam, Hossain, Jones, Bose et al., 2019). Because a 

major portion of KDOT pavement work involves rehabilitation of existing pavements, 

implementation of AASHTOWare PMED software is imperative for effective rehabilitation 

design.  

Jointed plain concrete pavement (JPCP) and asphalt concrete (AC) pavements are the 

prevalent pavement types in Kansas, and AC overlays are the primary rehabilitation options for 

flexible and rigid pavements throughout the state. KDOT has been using Chapter 5 of the 1993 

AASHTO Design Guide to design AC overlays over existing flexible or rigid pavements. In order 

to implement PMED software for rehabilitation design, however, the prediction models (i.e., 

alligator and longitudinal cracking, permanent deformation or rutting, transverse cracking, and IRI 

models) must be calibrated to local conditions to accurately predict pavement performance. In this 

study, calibration, and verification of PMED performance models were conducted for both AC 

over JPCP and AC over AC sections. 

One of the concerns with implementing PMED software is the need to recalibrate the 

performance models after updating the distress models or as more performance data becomes 
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available. A unique contribution of this study is to present a framework to automate the calibration 

process of PMED performance models. 

 1.3 Research Objectives 

The primary objective of this research was to calibrate and validate pavement performance 

models embedded in the AASHTOWare PMED software for AC overlays in Kansas. The first task 

assessed nationally calibrated performance models in the software, the second task calibrated the 

performance models to reduce bias and Se, and the third task validated the locally calibrated 

performance models. Completion of these tasks involved selecting pavement projects across 

Kansas that were reflective of current and future KDOT design standards and construction 

practices, accumulating as-constructed input parameters required to analyze selected projects in 

the PMED software platform, evaluating time-series distress data of these projects, and calibrating 

the PMED performance models in terms of goodness-of-fit criteria to estimate best values of the 

model coefficients. Parallel work was also done for the New England region.  

The second objective of this study was to develop an automated calibration technique to 

help highway agencies conduct periodic in-house calibration of the PMED software. The necessary 

steps to accomplish this objective included forming a programming routine to extract required 

information from the software, defining a clear objective function and optimization technique for 

parameter adjustments, incorporating several sampling techniques to verify the calibrated PMED 

models, and conducting suitable statistical testing so that the predicted performance data is in 

agreement with the measured data. 

Another task of the study was to evaluate the cracking resistance of common Superpave 

mixtures in Kansas and New York through laboratory testing. Finally, the local calibration results 

were verified using the latest version of the AASHTOWare PMED software released in September 

2022.  

 1.4 Automated Calibration of PMED 

Following the release of MEPDG in 2004, several states attempted implementation of the 

PMED software for routine pavement design. In 2017, a technical report of the AASHTO 

Pavement ME national user group found that 9 of the 21 responding highway agencies had 
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successfully implemented PMED software for asphalt pavements (AASHTO Pavement ME 

National Users Group Meetings, 2017). The report also listed software implementation challenges 

such as local calibration and verification of PMED performance models, availability of 

performance data, characterizing bound and unbound layer material properties, compatibility of 

performance measures, and threshold criteria. 

From its inception, the software underwent several improvements that necessitated 

frequent software recalibration (Tran et al., 2017). Changes in agency construction and design 

policy may also require recalibration of the performance models. Many highway agencies also 

reported long-term concerns regarding continuing resource allocation for the PMED model 

recalibration. Therefore, this study developed a programming routine to automate the 

computational process of the PMED model calibration system. In addition to the traditional split 

sampling approach, the jackknifing and the bootstrapping techniques were incorporated into the 

automated technique to verify PMED models. Furthermore, an equivalence testing approach was 

studied to ensure PMED predicted performance data complied with field performance data within 

a certain error margin.  

 1.5 Research Contribution 

According to the Transportation Works for Kansas (T-WORKS) website, KDOT budgeted 

over $1 billion for pavement rehabilitation with AC overlays for the years 2010–2020 

(Transportation Works for Kansas, 2011). Approximately $96 million was spent on constructing 

AC overlay in Kansas in fiscal year 2012–2013. Efficient design of AC overlay will ensure optimal 

cost of materials and construction and beneficially extend the fatigue life of the existing pavement. 

Even though the PMED software has become state-of-the-practice for designing new pavements 

for many highway agencies in the United States, substantial effort is needed to implement this 

approach for designing rehabilitated pavements.  

Calibration of PMED software requires development of a database for input parameters. 

The AASHTOWare software requires a wide range of design inputs to analyze a pavement section. 

This study analyzed traffic data from Kansas weigh-in-motion (WIM) and automated vehicle 

classification (AVC) facilities to generate statewide Level 2 traffic inputs for Kansas. 
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Characterization of Kansas traffic characteristics will be beneficial for future KDOT pavement 

design, and material inputs used in this study will help KDOT identify material properties that are 

sensitive for designing pavements. The same is applicable to New York state/New England region.  

This study also introduced a framework to automate the calibration and validation 

processes of the PMED performance models. Prior to this study, there was no evidence of using 

an automated technique to calibrate the prediction models in the PMED software. The automated 

calibration technique developed in this study will be extremely beneficial to highway agencies to 

conduct periodic in-house PMED performance model calibration. This study also implemented 

several statistical sampling techniques for calibrating and validating performance models. Since 

performance models in PMED software are continuously updated, the recommended sampling 

option can be used in future calibration studies.  

Previous local calibration studies of AASHTOWare PMED software primarily used a 

traditional equivalence testing approach (paired t-test) to determine bias. The local calibration 

guide of the PMED software recommends use of the paired t-test to evaluate significant differences 

between measured and predicted data. Although differences in datasets can be confirmed using 

this approach, their equality cannot be supported. Furthermore, a margin of equivalence cannot be 

established between the predicted and measured data in a paired t-test setting. This study is the 

first one to use an equivalence testing approach (i.e., two one-sided test [TOST]) to investigate 

measured and predicted data for a margin of equivalence. Use of the TOST approach can help 

establish an equivalence margin for the PMED predicted and field-measured distresses. 
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Chapter 2: Literature Review 

Many state highway agencies have adopted the MEPDG approach and accompanying 

PMED software to supplement or replace empirical pavement design procedures from the 1993 

AASHTO Design Guide. A prerequisite for implementing the PMED software for routine design 

is to verify and calibrate the performance models to local conditions. This chapter contains a 

detailed literature review of the MEPDG design process, and its performance prediction models 

for AC rehabilitation, KDOT rehabilitation options and design, and efforts undertaken by state 

highway agencies to locally calibrate PMED models. 

 2.1 Mechanistic-Empirical (M-E) Design Philosophy 

M-E design aims to characterize the physical, or mechanistic, causes of stresses in 

pavement structures and calibrate them with observed, or empirical, pavement performance 

(Pavement Interactive, 2012). M-E design applies engineering mechanics to compute pavement 

responses (i.e., deflection, stress, and strain), and these response values are used to predict 

pavement distresses (i.e., fatigue cracking and pavement deformation) from field-performance data 

(Huang, 2003).  

Figure 2.1 shows the iterative design and analysis procedure of the M-E approach used in 

the AASHTOWare PMED software. The software requires users to select a trial design strategy 

and input site conditions such as traffic, climate, and layer material properties. Critical responses 

such as deflection, stress, and strain are computed using structural analysis models in the software. 

These models include Jacob Uzan Layered Elastic Analysis (JULEA) for flexible pavements and 

the ISLAB2000 program for rigid pavements. In addition, the climatic effects tool Integrated 

Climatic Model (ICM) models temperature and moisture within each pavement layer and 

foundation (AASHTO, 2015). Transfer functions then predict field performance based on the 

critical responses. If the trial design satisfies agency-approved performance criteria at the specific 

design reliability, it becomes a candidate design structure and undergoes life cycle cost analysis 

(LCCA) for constructability (Kim et al., 2011). The Federal Highway Administration has listed 

the following advantages of the M-E design approach over traditional empirical approaches 

(Sufian, 2016):  
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• Provision of agency-established performance criteria for design; 

• Ability to characterize material parameters to reflect pavement performance; 

• Capability to evaluate pavement damage caused by unique loading 

configurations or increased axle loads; 

• Inclusion of seasonal variation effects; and  

• Capability to consider alternate design strategies and additional design 

features. 
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Figure 2.1: Flowchart of the AASHTOWare Pavement ME Design Process 
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 2.2 KDOT Rehabilitation Options and Design 

The most common maintenance technique for pavements exposed to moderate and heavy 

traffic is to place an overlay on top of existing pavement (Huang, 2003). AC overlays have 

commonly been placed on top of existing asphalt or concrete pavements throughout the United 

States because they provide a new wearing surface while advantageously utilizing the remaining 

fatigue life and load-carrying capacity of the existing pavement (Wargo et al., 2014). A significant 

amount of KDOT’s rehabilitation work involves overlaying existing JPCP and AC pavements with 

an AC overlay.  

Maintenance and rehabilitation strategies for flexible and concrete pavements are 

commonly categorized into three groups: routine maintenance, preventive maintenance, and 

pavement rehabilitation. For concrete pavement, routine maintenance includes joint and crack 

sealing, and preventative maintenance includes full and partial depth repair, load transfer 

restoration, sub-sealing and under-sealing. Rehabilitation techniques include grinding and milling, 

AC overlays, and Portland cement concrete (PCC) overlays. For flexible pavements, routine 

maintenance activities include crack sealing and patching (localized repair), and preventative 

maintenance activities include thin surface applications such as chip seal and ultra-thin bonded 

asphalt surface (UBAS). Rehabilitation techniques include hot-mix asphalt (HMA) overlays with 

or without cold milling, hot or cold recycling with reclaimed asphalt pavement (RAP), and PCC 

overlays. 

Rehabilitation options in Kansas that can be designed using the AASHTOWare Pavement 

ME software are AC overlay on top of JPCP pavement, AC overlay on top of HMA pavement, 

bonded and unbonded concrete overlays over JPCP, and PCC overlay over AC pavements. The 

most prevalent rehabilitation techniques in Kansas are AC overlay on top of JPCP pavements and 

AC overlay on top of existing AC pavements. Design considerations for AC overlay include pre-

overlay repair to achieve uniform strength condition, reflection crack control, future traffic 

loading, milling of existing AC surfaces, and drainage improvements. 
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 2.3 AASHTOWare PMED Performance Models for AC Overlay 

AASHTOWare software predicts AC rutting, top-down and bottom-up fatigue cracking, 

thermal cracking, reflective cracking, and smoothness degradation for AC-overlaid pavement 

sections. These performance models are briefly described in this section; more detailed description 

is available in the AASHTO MEPDG Manual of Practice (AASHTO, 2015). 

2.3.1 Rut Depth 

AASHTOWare PMED software defines rut depth as the highest difference in elevation 

between the transverse profile of the AC/AC surface and wire-line across the lane width 

(AASHTO, 2015). The incremental damage approach is used to predict total rutting. For HMA 

mixtures, the permanent deformation model is shown in Equation 2.1. 

∆p(HMA) = 𝜀𝜀p(HMA) ℎ(HMA) = 𝛽𝛽1r𝑘𝑘z𝜖𝜖r(HMA)10k1r𝑛𝑛k2rβ2r𝑇𝑇𝑘𝑘3𝑟𝑟𝛽𝛽3𝑟𝑟   
 Equation 2.1 

Where: 

∆p(HMA) = Accumulated permanent or plastic vertical deformation in the AC (HMA) 

layer, in.; 

𝜀𝜀p(HMA) = R Accumulated permanent or plastic axial strain in the AC (HMA) 

layer/sublayer (in./in.); 

ℎ(HMA) = Thickness of the AC (HMA) layer/sublayer (in.); 

𝜖𝜖r(HMA) = Resilient or elastic strain calculated by the structural response model at 

the mid-depth of each AC (HMA) layer, in; 

n = Number of axle-load repetitions; 

T = Mix or pavement temperature, ° F; 

𝑘𝑘z = Depth confinement factor;  

𝑘𝑘1𝑟𝑟P, 𝑘𝑘2𝑟𝑟, 𝑘𝑘3𝑟𝑟 = Global calibration factors (material-specific coefficients 

determined from repeated load tri-axial tests for permanent deformation); and 

𝛽𝛽1r, 𝛽𝛽2r, 𝛽𝛽3r = Local calibration coefficients.  

2.3.2 Load-Related Cracking 

AASHTOWare PMED software predicts two types of fatigue or load-related cracking: 

bottom-up alligator cracking and top-down longitudinal cracking. Fatigue damage prediction is 

based on the incremental damage approach, and the allowable number of axle-load applications 



13 

(Nf-HMA) is required to calculate the damage indices. AASHTOWare software uses the Asphalt 

Institute (MS-1) model to determine Nf-HMA, as shown in Equation 2.2. 

Nf-HMA = kf1 (C) (CH) βf1 (ɛt) kf2 βf2 (EHMA) kf3 βf3  
 Equation 2.2 

Where: 

ɛ t = Tensile strain at critical locations;  

EHMA = Dynamic modulus of HMA measured in compression, psi; 

kf1, kf2, and kf3 = Global field calibration coefficients (material-specific coefficients); 

β f1, β f2 and β f3 = Local calibration coefficients; 

C = 10M 

M = 4.84 * ( Vbe

𝑉𝑉a+Vbe
− 0.69) 

 Equation 2.3 
Vbe = Effective asphalt content by volume, %; 

Va = Percent air voids in HMA mixture; and 

CH = Thickness correction factor. 

AASHTOWare calculates the cumulative damage (DI) by summing the incremental 

damage indices over time, as  

DI=∑(∆DI) j,m,l,p,t = ∑ ( 𝑛𝑛
Nf−𝐻𝐻𝐻𝐻𝐻𝐻

) j,m,l,p,t  

 Equation 2.4 

Fatigue damage transfer functions for top-down (FCTop-Down) and bottom-up (FCBottom-up) 

cracking are 

FCTop-Down = 10.56* ( 1000
1+𝑒𝑒𝐶𝐶1−𝐶𝐶2∗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙top

)  
 Equation 2.5 

Where:  

C1, C2 = Local calibration coefficients  

and  

FCBottom-up = ( 6000
1+𝑒𝑒(𝐶𝐶1Cʹ1+C2Cʹ2Log(DI∗100))) 

 Equation 2.6 
Where: 

Cʹ1 = 2 * Cʹ2 

Cʹ2 = -2.40874 -39.748(1+HHMA)-2.856 

 Equation 2.7 
HHMA = AC layer thickness; and 

C1, C2 = Local calibration coefficients. 
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2.3.3 Transverse Reflection Cracking Model 

The transverse reflection cracking model, which was developed under the NCHRP 1-41 

project, has recently been integrated into the PMED software (Titus-Glover et al., 2016). The 

newly developed reflection cracking model replaces the empirically derived reflection cracking 

model and follows a combination of finite element and fracture mechanics approaches based on 

the Paris Law (Lytton et al., 2010). The newly developed reflection cracking model also considers 

incremental crack growth due to flexure, shear, and thermal stress in the overlaid AC layer. The 

transverse reflective crack model is shown in Equations 2.8–2.14. 

 ∆C =  𝑘𝑘1 ∗ ∆𝐵𝐵𝑒𝑒𝑛𝑛𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵 + 𝑘𝑘2 ∗ ∆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐵𝐵𝑛𝑛𝐵𝐵 + 𝑘𝑘3 ∗ ∆𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 R   
 Equation 2.8 

 ∆𝐵𝐵𝑒𝑒𝑛𝑛𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵 = 𝐴𝐴(𝑆𝑆𝑆𝑆𝑆𝑆)𝐵𝐵𝑛𝑛  
 Equation 2.9 

 ∆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐵𝐵𝑛𝑛𝐵𝐵 = 𝐴𝐴(𝑆𝑆𝑆𝑆𝑆𝑆)𝑆𝑆𝑛𝑛  
 Equation 2.10 

 ∆𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐴𝐴(𝑆𝑆𝑆𝑆𝑆𝑆)𝑇𝑇 
𝑛𝑛   

 Equation 2.11 
 ∆𝐷𝐷 =  𝑐𝑐1𝑘𝑘11∗bending+𝑐𝑐2𝑘𝑘2∗shearing+𝑐𝑐3𝑘𝑘3∗thermal

ℎ𝑂𝑂𝑂𝑂
   

 Equation 2.12 

 𝐷𝐷 =  ∑ ∆𝐷𝐷𝑁𝑁
𝐵𝐵=1   
 Equation 2.13 

 𝑅𝑅𝑅𝑅𝑅𝑅 =  � 100
𝑐𝑐4+ e𝑐𝑐5𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� ∗ 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶  
 Equation 2.14 

Where: 
∆C = Crack length increment, in.; 
∆D = Incremental damage ratio; 
∆Bending, ∆Shearing, ∆Thermal  = Crack length increments due to bending, shearing, 
and thermal loading; 
k1, k2, k3, c1, c2, c3 = Calibration factors; 
A, n = AC (HMA) material fracture properties; 
N = Total number of days; 
(SIF)B, (SIF)S, (SIF)T = Stress intensity factors due to bending, shearing, and 
thermal loading; 
D = Damage ratio; 
hOL = Overlay thickness, in.; 
RCR = Cracks in underlying layers, reflected, %; and 
EXCRK = Transverse cracking in underlying pavement layers, ft/mile (transverse 
cracking) 
           = Alligator cracking in underlying layers, % lane area (alligator cracking). 
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2.3.4 Smoothness model 

AASHTOWare PMED software predicts IRI based on the following equation: 

𝑆𝑆𝑅𝑅𝑆𝑆 = 𝑆𝑆𝑅𝑅𝑆𝑆𝑜𝑜 + 𝑅𝑅1 ∗ (𝑅𝑅𝐷𝐷) +  𝑅𝑅2 ∗ (𝑆𝑆𝑅𝑅𝑡𝑡𝑜𝑜𝑡𝑡𝑒𝑒𝑒𝑒) +  𝑅𝑅3 ∗ (𝑇𝑇𝑅𝑅) + 𝑅𝑅4 (𝑆𝑆𝑆𝑆) 
 Equation 2.15 

Where: 

IRI = Predicted IRI, in./mile; 

IRIo = Initial IRI after construction, in./mile; 

RD = Average rut depth, in.; 

FCtotal = Area of fatigue cracking (combined alligator, longitudinal, and reflection 

cracking in the wheel path), percent total lane area. All load-related cracks are 

combined on an area basis; length of cracks is multiplied by 1 ft to convert length 

into area; 

TC = Length of transverse cracking, ft/mile; and 

C1, C2, C3, C4 = Calibration factors 

Site factor (SF) is based on Equation 2.16: 

 SF = AGE1.5*{[ln (Precip + 1) (FI+1) P4]} + {[ln (Precip + 1) (PI+1) P200]}  
 Equation 2.16 

Where: 

AGE = Pavement age, year; 

PI = Percent plasticity index of the soil; 

Precip = Average annual precipitation, in.; 

FI = Average annual freezing index, oF-days; 

P4 = Percent passing the 0.02 mm sieve; and 

P200 = Percent passing the 0.075 mm sieve. 

 2.4 Local Calibration Efforts of AASHTOWare PMED Software 

Following the release of the MEPDG, numerous studies have been conducted at national 

and state levels to implement PMED software for pavement design. These studies have focused 

on sensitivity analysis to identify key design inputs, database development for traffic and material, 

verification of nationally calibrated AASHTOWare PMED models, calibration of these models, 

and implementation of PMED software for routine pavement design. A brief description of these 

studies is provided in the following sections. 
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2.4.1 Local Calibration of MEPDG Performance Models in Missouri 

The Missouri Department of Transportation (MoDOT) attempted to verify and locally 

calibrate MEPDG version 1.0 in 2009 (Mallela et al., 2009a, 2009b). The study included new and 

reconstructed AC and JPCP, AC over AC, and AC over JPCP sections. Materials were 

characterized at different hierarchical levels based on available information. For example, Level 1 

inputs were used for HMA unit weight and volumetric properties, Level 2 inputs were used for 

HMA dynamic modulus, and Level 3 inputs were used for HMA creep compliance and indirect 

tensile strength tests. An MEPDG database, modeled after the LTPP database, was developed to 

support the calibration effort. Traffic data from 12 permanent WIM sites, including nine LTPP 

WIM sites were analyzed to produce traffic inputs required by the MEPDG software. The analyzed 

data were compared to national default values in the software. MoDOT also performed laboratory 

tests to determine dynamic modulus and repeated-load permanent deformation characteristics of 

HMA mixes taken from the field. Results showed that the MEPDG equation for estimating Level 

2 dynamic modulus input works reasonably well for MoDOT HMA mixtures with modified and 

unmodified binders. Sensitivity analysis was also performed to study the effect of changing design 

input parameters on MEPDG distress and IRI models. This verification and calibration study 

revealed the following: 

• The MEPDG software overpredicted total rutting, and a poor correlation was 

observed (R2 = 0.32 and Se = 0.11) between predicted and measured data. A 

fair correlation (R2 = 0.52 and Se = 0.05) was reported after local calibration. 

• Approximately 99% of all measured alligator cracking was less than 5% of the 

total lane area). The researcher suggested that the nationally calibrated 

MEPDG model be used at the time of the study, and the model should be 

reevaluated when data indicated higher magnitudes of alligator cracking. 

• Significant bias and standard error were found between predicted transverse 

cracking with global MEPDG coefficients and measured values. The local 

calibration coefficient βt was adjusted to 0.625 from 1.5 to reduce bias. The 

researchers suggested use of Level 1 creep compliance and tensile strength 
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values to obtain reasonable prediction of HMA transverse cracking for routine 

design. 

• The researchers concluded that, following local calibration, predictions were 

reasonable for new pavements in relatively good condition, but they suggested 

use of higher reliability for pavement sections older than 15 years. 

2.4.2 Local Calibration of MEPDG Performance Models in Iowa 

Several studies have been conducted to calibrate AASHTOWare prediction models and 

implement the software in Iowa (Ceylon et al., 2009; Ceylon et al., 2013). An initial verification 

study, conducted in 2009, evaluated HMA pavement rutting and IRI models with nationally 

calibrated coefficients and bias reported for rutting and IRI models. In 2013, MEPDG version 1.1 

was used to perform local calibration in Iowa (Ceylan et al., 2013). A total of 35 HMA sections, 

35 JPCP sections, and 60 HMA over JPCP sections were selected. Software inputs were collected 

from the Iowa DOT pavement management information system (PMIS) database, material test 

records, design database, and previous reports relevant to MEPDG implementation in Iowa. Linear 

and nonlinear optimization techniques were used to improve accuracy of the prediction models. 

Traditional split sampling method was used for calibration and validation; 70% of the total sections 

were used for calibration, and the remaining 30% of the sections were used for validation.  

The study found that the accuracy of rutting and top-down fatigue cracking predictions 

improved for new HMA pavement sections after local calibration. Although little or no thermal 

cracking was predicted when proper binder grade was used for regional climate conditions, 

significant thermal cracking was observed for new HMA pavement sections. The nationally 

calibrated bottom-up cracking model was found to be acceptable for predictions for new HMA 

pavements. For HMA over JPCP sections, the study reported that both rutting and alligator 

cracking models with globally calibrated coefficients provided good/acceptable predictions, while 

the locally calibrated top-down cracking model provided better predictions with lower bias and 

standard error. Transverse cracking model was not calibrated for HMA overlays over JPCP 

pavements. 
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In 2015, a recalibration study was conducted with the same pavement sections using the 

AASHTOWare PMED version 2.1.24 (Ceylan et al., 2015). The objectives of this study were to 

evaluate the accuracy of nationally calibrated and previously calibrated MEPDG performance 

models and to recalibrate performance models, if necessary. Researchers reported that the 

AASHTOWare PMED software significantly increased the accuracy of rutting and IRI models 

with locally calibrated coefficients compared to the nationally calibrated and previously calibrated 

MEPDG models for AC over JPCP pavements. The subsequent calibration effort also reported 

improved accuracy of the top-down fatigue cracking model. Because the Iowa DOT PMIS 

database distinguishes between thermal and reflective cracking for AC overlaid sections, this study 

considered measured transverse cracking data for such sections to be thermal cracking and thereby 

only calibrated the thermal cracking model.  

2.4.3 Calibration and Implementation of MEPDG in Colorado 

MEPDG version 1 was used for a calibration and implementation study for the Colorado 

Department of Transportation (CDOT) in 2013 (Mallela et al., 2013). The principal objective of 

the study was to incorporate the MEPDG guide and the accompanying software into routine 

pavement design, management, and forensic analysis practices. A total of 127 new and 

rehabilitated pavement projects were selected from the LTPP and CDOT pavement management 

system database. MEPDG input parameter characterization involved reviewing traffic, climate, 

and other relevant data records; laboratory testing materials to determine strength and modulus; 

and conducting field surveys, destructive, and nondestructive testing of in-service pavements to 

assess condition. Alligator cracking, rutting, transverse cracking, and IRI models were verified 

and recalibrated for Colorado conditions for new and rehabilitated flexible pavements. Nonlinear 

optimization technique was used to calibrate MEPDG prediction models and reasonable goodness 

of fit was determined using diagnostic statistics R2 and Se. The criteria to determine model 

accuracy for Colorado conditions are presented in Table 2.1. In addition, design comparisons and 

sensitivity studies were conducted to establish confidence in pavement design results using the 

MEPDG. Researchers recommended establishing an enterprise-level database of CDOT default 

inputs to cover performance criteria, reliability, traffic, climate, materials, and soils.  
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Table 2.1: Criteria for Determining Global Model Adequacy for Colorado Conditions 

Criterion of 
Interest Test Statistic 

Range of R2 
and 

Model Se 
Rating 

Goodness of 
fit 

R2, percent (all models) 

81 to 100 Very good (strong 
relationship) 

64 to 81 Good 
49 to 64 Fair 

< 49 Poor (weak or no relationship) 

Global HMA transverse cracking model 
Se, percent 

< 5 Good 
5 to 10 Fair 
> 10 Poor 

Global HMA transverse cracking model 
Se - N/A 

Global HMA total rutting model Se, in 
< 0.1 Good 

0.1 to 0.2 Fair 
> 0.2 Poor 

Global HMA IRI model Se, in/mil 
< 19 Good 

19 to 38 Fair 
> 38 Poor 

Bias 

Hypothesis testing of slope (b1) of the 
linear measured vs predicted distress/IRI 

model; 
Ho : b1 = 0 

p-value 
Reject if p-value is < 0.05 
(i.e., 5% significant level) 

Paired t-test between measured and 
predicted distress/IRI p-value 

Reject if p-value is < 0.05 
(i.e., 5% significant level) 

2.4.4 Calibration and Implementation of MEPDG in Arizona 

Local calibration of MEPDG software was conducted for Arizona conditions in a study 

sponsored by the Arizona Department of Transportation (ADOT) (Darter et al., 2014). A total of 

180 pavement sections, including 119 LTPP test sections, were selected for this study. The selected 

pavement types were new HMA pavement, AC overlay over existing AC pavement, new JPCP, 

new composite (AC overlaid JPCP), and AC overlay (old, intact JPCP and fractured JPCP). 

Software input parameters were obtained from the LTPP database, ADOT files and videos, and 

field surveys conducted by the research team. Material properties were characterized at different 
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hierarchical levels based on available information. For example, Level 1 inputs were used for 

HMA creep compliance, while Level 3 inputs were used for effective binder content. Traditional 

split sampling method was used for calibration and validation; 10% of the sections were used for 

validation. Statistical software, SAS, was used to determine local calibration coefficients. The 

researchers reported notable improvement of goodness of fit and bias reduction in prediction 

models after local calibration. 

2.4.5 Local Calibration of MEPDG for Flexible Pavements in North Carolina 

MEPDG version 1 was used to calibrate and validate rutting and alligator cracking models 

in North Carolina in 2008 (Muthadi & Kim, 2008). Fifty-three flexible pavement sections were 

selected from the LTPP and North Carolina Department of Transportation (NCDOT) databases. 

Another study was conducted in 2011 to calibrate rutting and alligator cracking models using 

MEPDG software version 1.1 (Kim et al., 2011). A total of 46 pavement sections were chosen for 

this study, including 22 LTPP sites used for calibration. Material-specific global field calibration 

coefficients in the rutting model and fatigue model coefficients were determined for 12 most 

commonly used asphalt mixtures in North Carolina. Repeated load tri-axial permanent 

deformation and viscoelastic continuum damage fatigue tests were conducted in the laboratory to 

develop material-specific coefficients for the rutting and fatigue cracking models, respectively. 

For subgrade soil characterization, a GIS-based methodology was developed to accurately identify 

road sections of interest on NCHRP 9-23 soil maps and extract related soil information. Two 

optimization techniques were used for calibration: the generalized reduced gradient (GRG) method 

and the genetic algorithm (GA) method. The latter yielded statistically better rutting and alligator 

cracking predictions. Model adequacies of the prediction models were evaluated using R2, Se, 

Se/Sy, and the p-value for the null hypothesis (average bias is zero) at 95% confidence level. 

Although the bias and Se were less than the global counterparts after local calibration, this 

improvement was not significant enough to accept (fail to reject) the null hypothesis at 95% 

confidence level. For future calibration efforts, researchers recommended checking reasonableness 

of MEPDG assumptions when assigning observed surface pavement deformations to each layer 

and to differentiate between bottom-up and top-down fatigue cracks. 



21 

2.4.6 MEPDG Calibration for Pavement Rehabilitation in Oregon 

A study for local calibration of MEPDG was done for the Oregon Department of 

Transportation (Oregon DOT) in 2013 (Williams & Shaidur, 2013). Since a majority of pavement 

work conducted by the Oregon DOT involves rehabilitation, the main focus of the study was to 

verify and calibrate prediction models in MEPDG for rehabilitated pavements. Forty-four 

pavement sections were selected to account for geographical diversity in Oregon (i.e., coastal, 

valley, and eastern), and the pavement types included HMA over aggregate base, HMA inlay or 

overlay over aggregate base, HMA inlay or overlay over cement-treated base (CTB), and HMA 

over CRCP. The principal objective of this research was to provide Oregon DOT with performance 

models embedded in the MEPDG software that can predict alligator cracking, longitudinal 

cracking, rutting, and thermal cracking calibrated to Oregon conditions. Verification results 

showed significant bias between the measured and predicted distresses using nationally calibrated 

coefficients. Local calibration was conducted for rutting, alligator cracking, longitudinal cracking, 

and thermal cracking models; the IRI model was not calibrated in this study. After local calibration, 

the rutting and alligator cracking prediction models showed improved predictions with lower bias 

and standard error than the nationally calibrated models. A high degree of variability between 

measured and predicted data was reported for the longitudinal and thermal cracking models even 

after local calibration. 

2.4.7 MEPDG Local Calibration Effort in Louisiana 

Several studies have evaluated MEPDG performance models for Louisiana. The first 

research project, conducted in 2012, investigated only new and full depth rehabilitated (with a 

reconstructed base) flexible pavements (Wu & Yang, 2012). A follow-up project was conducted 

in 2016 to locally calibrate and validate the AASHTOWare PMED software in Louisiana (Wu & 

Xiao, 2016). Eighty-four pavement sections were selected from the Louisiana Department of 

Transportation and Development (LADOTD) highway network. The pavement types were flexible 

pavements with HMA base, rubblized PCC base, crushed stone or recycled PCC base, soil cement 

base, and stabilized base with stone interlayer; rigid pavements with unbound granular base and 

asphalt mixture blanket base; and HMA overlay on top of existing flexible pavements. Software 
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input parameters were obtained from network-level data sources at LADOTD, and a default input 

strategy reflecting LaDOTD’s pavement design practices and conditions was developed for the 

software based on an extensive sensitive analysis of key parameters. Verification analysis 

indicated that the PMED software generally under-predicted alligator cracking but over-predicted 

rutting for flexible pavements with nationally calibrated coefficients. Local calibration was carried 

out to reduce bias and standard error, and implementation guidelines were developed for routine 

design and analysis for new and rehabilitated pavement structures in Louisiana. 

2.4.8 Local Calibration and Implementation of MEPDG in Michigan  

Several studies have been conducted to evaluate, calibrate, and validate MEPDG 

performance models in Michigan. In 2008, the first research project conducted a sensitivity 

analysis to investigate key input parameters and validate the performance models in MEPDG 

(Buch & Jahangirnejad, 2008). In addition, extensive research was conducted to characterize 

traffic and pavement materials in Michigan, including quantifying concrete mix coefficient of 

thermal expansion (Buch & Jahangirnejad, 2008), evaluating rehabilitation measures in Michigan 

(Buch et al., 2013), characterizing truck traffic in Michigan (Buch et al., 2009), and characterizing 

HMA mixtures (Kutay & Jamrah, 2013). A local calibration study, conducted in 2015, considered 

20 JPCP and 108 HMA reconstruction projects and 41 rehabilitation projects (Brink, 2015). Five 

types of sampling techniques were used to improve accuracy of the calibrated performance models: 

no sampling, traditional split sampling, repeated split sampling, jackknifing, and bootstrapping. 

Calibrated models derived from the bootstrapping sampling technique consistently showed lower 

standard error and bias. Top-down longitudinal cracking, bottom-up alligator cracking, thermal 

cracking, rutting, and IRI models were calibrated for flexible pavements, and the calibrated 

performance models were shown to significantly improve predictions for Michigan conditions. 

Researchers recommended that local calibration of the prediction models be conducted every six 

years. 

2.4.9 Local Calibration of MEPDG for Northeastern United States 

A verification and calibration study of the MEPDG was conducted for northeastern states 

of the United States in 2011 (Momin, 2011). The study was sponsored by the New York State 
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Department of Transportation and carried out at the University of Texas at Arlington. Seventeen 

LTPP pavement sections were selected from Connecticut, Maine, Massachusetts, New Jersey, 

Pennsylvania, Vermont, New Hampshire, and New York. Design input parameters were obtained 

from the LTPP database and predicted distress data were compared to LTPP measured data from 

the selected sites. MEPDG version 1.1 was used in the study. Significant differences were observed 

between measured and predicted distresses (with nationally calibrated models), and local 

calibration was performed to minimize the differences. Simple linear regression with no intercept 

was performed for each pavement layer to calibrate the rutting model, and a new set of model 

coefficients was proposed for AC, granular base, and subgrade soil layer. Coefficients of top-down 

and bottom-up fatigue cracking models were derived from fatigue damage output generated from 

the software. A simple linear regression was used to calibrate the IRI model by computing model 

coefficients based on relevant distresses. 
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Chapter 3: Methodology 

Processes for verification, calibration, and validation of performance prediction models in 

the AASHTOWare PMED software are described in this chapter. Furthermore, Kansas truck 

traffic characterization, pavement materials, and climatic input parameters are discussed in detail, 

and an analysis of KDOT’s automated distress survey data is presented. 

 3.1 NCHRP 1-40B Calibration Steps 

The local calibration guide for AASHTOWare PMED software, developed under NCHRP 

project 1-40B, outlined an 11-step procedure for local calibration (AASHTO, 2010).  

Step 1: Select hierarchical input level for each input parameter 

The AASHTOWare Pavement ME software allows users to input layer material properties 

and traffic input parameters at three hierarchical levels. The hierarchical approach offers 

substantial flexibility for obtaining design inputs based on available resources. Level 1 inputs, 

which represent the highest level of accuracy and the lowest level of input errors, are project-

specific with extensive laboratory test results and precisely counted traffic volume, distribution, 

and axle load spectra. Dynamic modulus testing of HMA or site-specific average annual daily 

truck traffic (AADTT) is an example of Level 1 input (Williams et al., 2013). Such extensive 

testing and data collection, however, require significant resource allocation. Level 2 input 

represents an intermediate level of accuracy and can be estimated from correlations or regression 

equations, such as estimating PCC elastic moduli from the compressive strength test or calculating 

soil resilient moduli from the Dynamic cone penetration (DCP) or California bearing ratio (CBR) 

tests. Level 3 inputs are based on global default values in the software. These inputs are user-

selected, typical average values or best-estimated values, such as default soil resilient modulus 

values for a particular soil type, or Poisson’s ratio for a particular material type. Level 3 input has 

the least accuracy but requires least resource allocation for material testing and data collection. 

Input level selection is a policy decision dependent on an agency’s construction practices 

and specifications. This selection is extremely important for local calibration since errors 

associated with each input parameter contribute to the final standard error of the distress models 

and reflect upon material quality requirements and construction costs (AASHTO, 2010).  
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Step 2: Develop local experimental plan and sampling template  

The second step in the local calibration and validation process develops a detailed sampling 

template based on an agency’s construction practice and design specification. The experimental 

design should consider typical pavement type and thickness, traffic level, and climatic condition 

for the region. The sampling template could be a full factorial or fractional factorial design 

depending on the number of roadway segments for each combination.  

Step 3: Estimate sample size for specific distress prediction models  

The third step involves estimating the minimum number of roadway projects required to 

conduct local calibration and validation of distress models in the PMED software. AASHTO 

suggests the following equations for estimating the number of roadway segments (N) for 

calibration and validation:  
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 Equation 3.3 

Where:  

Sy = standard deviation of the measured distress; 

Se = standard deviation of bias between measured and predicted distress; 

α = performance indicator threshold value or level of significance at typical 

agency design reliability level; 

Χ2 = chi-square value based on degree of freedom and α level of significance; 

Z = standard normal deviate based on degree of freedom and α level of 

significance; 

t = t distribution value based on the degree of freedom and level of significance; 

and  

et = tolerable bias between measured and predicted distresses. 

Equations 3.1 and 3.2 estimate the sample size based on the mean or bias between 

measured and predicted distresses, while Equation 3.3 estimates sample size based on variance or 
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precision (Abdullah, 2015). AASHTO suggests the level of significance to be 90% as the practical 

level for determining the sample size for calibration.  

Step 4: Select roadway segments 

Step 4 populates the sampling template developed in Step 3. The selected projects should 

be representative of an agency’s design and construction practices and should be spread throughout 

the agency’s administrative region (Darter et al., 2014). Roadway segments should consist of the 

least number of structural layers and materials to reduce the amount of testing and input required 

for material characterization (AASHTO, 2010). The selected projects also should have similar time 

intervals between distress measurements, and at least three condition surveys should be available 

for each roadway segment (AASHTO, 2010).  

Step 5: Extract and evaluate distress and project data 

Input data for each project are collected and verified in Step 5. In addition, distress data are 

extracted, preferably from the agency’s pavement management system database, and the 

compatibility of distress data with PMED software requirements are ensured. The local calibration 

guide developed under NCHRP 1-40 B categorizes Step 5 into four activities (AASHTO, 2010): 

I. Extract distress data and review the measured data to determine whether the 

distress data are consistent with values predicted by the software.  

II. Compare the performance data to trigger values or design criteria used by the 

agency.  

III. Evaluate the distress data for anomalies and outliers. 

IV. Determine input parameters for the software. The local calibration guide lists 

possible data sources that could be used in the calibration process. These 

sources are construction records, quality control and quality assurance 

database, and as-built construction plans.  

Step 6: Conduct field and forensic investigations 

Step 6 involves field sampling and material testing to obtain missing data and verify key 

inputs for the selected projects. Field and forensic investigations include extracting cores from 

asphalt pavements to determine initiation of crack propagation (top-down versus bottom-up) and 

measuring rutting in individual layers. Resource constraints require an agency to decide what, if 
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any, forensic investigations are required. Field and forensic investigations are not necessary if the 

agency accepts the assumptions embedded in the software.  

Step 7: Assess local bias by applying globally calibrated values to local conditions, policies, and 

materials  

The principal goal of distress and IRI model calibration is to reduce or eliminate the bias 

between software-predicted and measured distress data since a biased model in the AASHTOWare 

PMED software will produce overdesigned or under-designed pavements (AASHTO 2010). Step 

7 compares predicted and measured distresses to determine the bias and validate each distress 

prediction model for local conditions, policies, specifications, and materials (AASHTO, 2010).  

The null hypothesis for the sampling template should be evaluated to determine bias. A 

paired t-test is often used to determine the presence of significant bias at a specified confidence 

level (AASHTO, 2010). The null hypothesis is  

𝐻𝐻𝐻𝐻 ∶  ∑ � 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝐵𝐵 −  𝑥𝑥𝑝𝑝𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵𝑐𝑐𝑡𝑡𝑒𝑒𝐵𝐵� = 0𝑛𝑛
𝐵𝐵=1   

 Equation 3.4 
Where: 

ymeasured = measured value, and 

xpredicted  = predicted value by AASHTOWare PMED software. 

The local calibration guide suggests the use of two other model parameters to fully evaluate 

model bias, the intercept (bo) and slope (m), from the following fitted linear regression model 

between ymeasured and xpredicted values. 

𝑦𝑦�𝐵𝐵 =  𝑏𝑏𝑜𝑜 + 𝑚𝑚(𝑥𝑥𝐵𝐵)  
 Equation 3.5 

The intercept (bo) and slope (m) are used in hypothesis testing as follows: 

𝐻𝐻𝐻𝐻 ∶  𝑏𝑏𝑜𝑜 = 0  
 Equation 3.6 
𝐻𝐻𝐻𝐻 ∶  𝑚𝑚 = 1.0   
 Equation 3.7 

Step 8: Eliminate local bias of distress prediction models 

If significant bias exists between predicted and measured distresses, the cause of bias must 

be determined and eliminated via local calibration (Haider et al., 2014). The processes for 
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eliminating or reducing bias depend on the bias sources and desired accuracy. NCHRP 1-40 B 

project lists three scenarios of bias manifestation (AASHTO, 2010): 

I. If residual errors from measured and predicted distresses are consistently 

positive or negative with low Se compared to the agency-specified trigger value 

and the slope of residual errors versus predicted values is relatively constant 

and close to zero, then the precision of the prediction model is reasonable, but 

the accuracy is poor. This condition generally requires the least amount of effort 

and the least number of AASHTOWare software runs to reduce bias. In this 

situation, coefficients of the transfer function must be adjusted to eliminate bias. 

II. If the bias is low and relatively constant with the time or number of loading 

cycles and the residual errors have a wide dispersion varying from positive to 

negative values, then model accuracy is reasonable, but precision is poor. In 

this scenario, coefficients of the transfer functions must be modified. However, 

these coefficients could be dependent on site features, material properties, or 

design features in the sampling template. This situation requires more 

AASHTOWare runs and increased effort to reduce dispersion of residual errors. 

III. If residual errors versus predicted values exhibit a significant and variable slope 

and the slope seems to be dependent on the predicted value, then the precision 

of the predictive model is poor, the accuracy is time dependent, and the 

correlation between measured and predicted distresses is very poor. This is the 

most complex scenario for calibrating the prediction model since this condition 

requires the highest level of effort and the greatest number of software runs. 

The NCHRP 1-40B study recommended calibration parameters for a transfer function that 

should be adjusted to eliminate bias between the measured and predicted data (AASHTO, 2010). 

Table 3.1 lists these suggested coefficients. However, additional calibration parameters in a 

transfer function may need adjustments since these parameters are dependent on site factors, layer 

properties, and agency policies. 
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Table 3.1: Adjusted Flexible Pavement Transfer Function Calibration Parameters to 
Eliminate Bias and Reduce Standard Error  

Distress Eliminate bias Reduce standard error 

Total rutting Unbound materials and 
HMA layers Kr1, βs1, or βr1  Kr2, Kr3, and βr2, βr3 

Load-related cracking 

Alligator cracking C2 or kf1 kf2, kf3, and C1 

Longitudinal cracking C2 or kf1 kf2, kf3, and C1 

Semi-rigid pavements C2 or βc1 C1, C2, C4 

Non-load-related cracking Transverse cracking βt3 βt3 

                  IRI C4 C1, C2, C3 
Source: AASHTO, 2010 

Step 9: Assess the standard error of the estimate 

Step 9 determines the Se from the locally calibrated dataset; this Se must then be compared 

to the Se computed from the globally calibrated dataset. Models with local Se values higher than 

global Se values should be recalibrated to lower the standard error (Robbins et al., 2017). However, 

an agency can decide to accept the higher standard error from the locally calibrated model if it is 

within the agency’s acceptable limit. The NCHRP 1-40B report listed reasonable values of 

standard error for each distress transfer function (AASHTO, 2010). These values are also provided 

in Table 3.1. 

Step 10: Reduce standard error of the estimate 

High standard error of the prediction models can lead to overly conservative design at 

higher reliability. In such cases, the agency can decide to revise the locally calibrated parameters 

in the transfer function. Of the four components of standard error, calibration can reduce only the 

lack-of-fit or model error.  

Step 11: Interpret results and determine adequacy of calibration parameters 

Step 11 evaluates the locally calibrated distress and IRI models at different reliability 

levels. Pavement sections analyzed with locally calibrated AASHTOWare PMED software should 

be reviewed if the expected design life is reasonable for agency performance criteria and reliability 

levels (Robbins et al., 2017). The agency also must decide whether the predicted design 

thicknesses make sense given historical performance of in-service pavement sections. 
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 3.2 Application of NCHRP 1-40B Recommendations to Kansas Conditions 

Despite the detailed recommendations listed in the NCHRP 1-40B report, local calibration 

efforts conducted by state highway agencies do not always follow the suggested guidelines 

(Robbins et al., 2017). For example, the local calibration guide recommends determining the 

minimum number of projects to verify and calibrate PMED performance models, assuming that, 

for local calibration, state highway agencies should use Level 1 and Level 2 inputs to reflect local 

materials, conditions, and practices. However, such detailed input may not be available for the 

required number of projects. Table 3.2 presents AASHTO-suggested required number of 

pavement section for validation and calibration of PMED performance models for various distress 

types. 

 
Table 3.2: Minimum Sample Size Guidelines for Local Calibration of Distress Models  

Distress type Number of pavement sections 

Distortion-rutting and faulting 20 

Load-related cracking 30 

Non-load-related cracking 26 

Reflective cracking (HMA surfaces only) 26 
Source: Haider et al., 2014 

As shown in Table 3.2, at least 26 pavement sections are required for verification and 

calibration of the reflective cracking model of the AASHTOWare software. In addition, the 

calibration guide suggests that each considered section should have at least three condition 

surveys. Since maintenance activities are more frequent for rehabilitated pavements than new 

pavements, finding HMA-overlaid pavement sections with three or more condition surveys is 

difficult. This study selected 25 AC over AC sections based on the following project selection 

criteria and in consultation with KDOT: 

• Projects in which existing highway segment construction occurred in 1995 or 

later to ensure that required Pavement ME input information was available in 

the KDOT construction management system (CMS) 
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• Projects in which less than five overlays occurred during the life of the 

existing pavement structure 

• Projects that contain a minimum 1-in. HMA overlay on top of the existing 

HMA pavement and a minimum 1.5-in. overlay on top of the existing AC 

section 

• Projects that encompass all six districts of KDOT  

The selected project locations are shown in Figure 3.1, and general features of these 

projects are listed in Table 3.3. 

 

 
Figure 3.1: Locations of Selected AC-Over-AC Projects throughout Kansas 
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Table 3.3: General Descriptions of Selected AC-Over-AC Projects in Kansas 

No. Project Name Route County Begin 
milepost 

End 
milepost 

Length 
(mile) 

1 KA-2628-01 I-70 Saline 0.000 8.000 8.00 
2 KA-9466-01 I-70 Saline 8.000 15.000 7.00 
3 KA-4013-01 US-24 Osborne 23.000 30.000 7.00 
4 KA-1436-01 US-36 Cheyenne 14.029 19.000 4.97 
5 KA-2188-01 US-36 Republic 7.000 8.101 1.101 
6 KA-0813-01 US-36 Washington 17.269 26.445 9.176 
7 K-0657-01 US-69 Bourbon 6.009 9.603 3.6 
8 KA-0811-01 US-75 Montgomery 27.000 31.000 4.00 
9 KA-0310-01 US-75 Osage 7.000 12.738 5.738 
10 KA-4192-01 US-77 Butler 0.000 12.000 12.00 
11 KA-2941-01 US-77 Butler 43.558 50.671 7.11 
12 KA-2923-01 US-81 McPherson 0.000 2.562 2.56 
13 K-8431-01 US-83 Seward 1.000 6.000 5.00 
14 KA-1480-01 US-160 Clark 6.000 1.000 5.00 
15 K-7756-01 US-166 Chautauqua 0.000 5.000 5.00 
16 KA-1460-01 US-166 Cowley 13.145 19.145 6.00 
17 KA-2200-01 US-169 Allen 14.897 22.941 8.044 
18 KA-2204-01 US-169 Anderson 0.000 4.153 4.15 
19 KA-2966-01 US-183 Ellis 0.000 3.000 3.00 
20 KA-2505-01 US-183 Rooks 20.315 22.332 2.02 
21 KA-1444-01(1) US-183 Phillips 15.050 22.000 6.95 
22 KA-1444-01(2) US-183 Phillips 23.000 32.753 9.75 
23 KA-3674-01 US-283 Norton 20.790 32.049 11.26 
24 K-9364-01 K-92 Jefferson 8.000 12.738 4.738 
25 KA-3496-01 K-254 Sedgwick 5.000 10.319 5.32 

 

This study selected 18 AC-over-JPCP sections based on the following project selection 

criteria:  

• Projects that were overlaid after 2000 

• Projects in which the existing JPCP surface did not experience diamond 

grinding 
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• Projects with less than five overlays during the life of the existing pavement 

structure 

• Projects that contain an HMA overlay on top of existing concrete pavement 

• Projects should encompass all six districts of KDOT 

Selected project locations are shown in Figure 3.2, and general project features are listed 

in Table 3.4. 

 

 
Figure 3.2: Locations of Selected AC-Over-JPCP Projects throughout Kansas 
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Table 3.4: General Descriptions of Selected AC-Over-JPCP Projects in Kansas 

No. Project Name Route County Begin 
milepost 

End 
milepost 

Length 
(mile) 

1 KA-2836-01 I-70 Shawnee 0.000 4.000 4.00 
2 KA-4136-01 I-70 Shawnee 11.000 15.657 4.66 
3 KA-4036-01 I-70 Sherman 17.142 27.000 9.86 
4 KA-2835-01 I-70 Wabaunsee 20.000 24.009 4.00 
5 KA-3282-01 I-70 Wyandotte 8.000 12.000 4.00 
6 KA-4236-01 I-135 Harvey 0.000 7.015 7.02 
7 KA-1950-01 US-50 Marion 16.126 20.995 4.87 
8 KA-1951-01 US-50 Chase 0.000 9.000 9.00 
9 KA-0378-01(1) US-50 Harvey 28.641 35.560 6.92 
10 KA-0378-01(2) US-50 Harvey 27.000 28.641 1.64 
11 KA-2669-01 US-54 Shawnee 17.841 20.326 2.49 
12 KA-1931-01 US-81 Cloud 0.000 16.000 16.00 
13 KA-3848-01 US-400 Labette 0.000 8.807 8.81 
14 K-7823-01 K-7 Johnson 18.687 20.955 2.27 
15 KA-2681-01 K-57 Marion 0.000 8.008 8.01 
16 KA-2682-01 K-150 Chase 0.000 8.637 8.64 
17 KA-3006-01 K-156 Finney 1.936 3 1.06 
18 KA-2001-01 K-254 Butler 11.882 14.309 2.43 

 3.3 Hierarchical Input Level 

Hierarchical level of inputs must be selected to characterize as-constructed pavements in 

the PMED software because performance model predictions directly rely on input parameter 

selection (Haider et al., 2014). Many studies have attempted to identify sensitive input parameters 

that affect pavement performances. Pavement cross sections and layer moduli have been shown to 

be sensitive in predicting performances for all pavement types (NCHRP, 2004), as have truck 

traffic volume and loading (Li et al., 2009). A sensitivity study conducted in Michigan for AC 

pavement rehabilitation with AC overlay observed that existing pavement condition rating prior 

to overlay and thickness of overlay are critical for all performance measures (Buch et al., 2013). 

In addition, percent air void in the AC overlay and the interaction between existing pavement 

condition and overlay effective binder content were found to be sensitive in determining fatigue 
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cracking. Accuracy of the calibrated PMED models significantly rely on the available pavement 

cross section, material, traffic, and pavement performance data (Haider et al., 2014).  

Selection of the hierarchical level of input parameters is essential since software calibration 

with inaccurate input parameters would yield overdesigned or under-designed pavements. Best 

available input level has been used in this study for the selected pavement sections. The input 

selection procedure for traffic, layer materials, climate, and pavement cross sections is discussed 

in the following sections.  

 3.4 Traffic Input 

Traffic data is one of the primary inputs for design and analysis of pavement structures. 

AASHTOWare PMED software, which requires axle load spectra to represent loads from mixed 

traffic, are derived from traffic data collected at WIM stations (Islam et al., 2017). These spectra 

represent the percentage of total axle load applications within designated load intervals for single, 

tandem, tridem, and quad axles. In addition, seasonal and hourly traffic variations are also required 

and represented as monthly adjustment factor (MAF) and hourly distribution factor (HDF), 

respectively. These factors are computed by continuous vehicle count and AVC data recorded by 

vehicle classification stations. However, Kansas collects WIM data for shorter durations at specific 

sites in the state. 

In addition to traffic volume adjustment factors (MAFs and HDFs), the following vehicle 

class factors (VCFs), axle load distribution factors, and several other traffic inputs are also required 

for the AASHTOWare PMED software (NCHRP, 2004): 

• Initial two-way AADTT 

• Percentage of trucks in the design direction and design lane 

• Traffic growth factors 

• Vehicle operation speed 

• Axle and wheelbase configurations 

Traffic inputs embedded in the AASHTOWare PMED software estimate loads applied 

throughout the design life of the pavement. Since site-specific Level 1 traffic inputs are difficult 

to generate for every design project throughout the state, statewide Level 2 inputs based on similar 
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characteristics for the traffic stream must be developed. Haider et al. (2011) analyzed data collected 

from 44 WIM stations and 51 AVC stations and developed Level 2 inputs for Michigan using the 

Ward’s method of cluster analysis. Romanoschi et al. (2011) collected WIM and AVC data for 

New York state from 2004 to 2009 and found that HDF and MAF values vary significantly from 

the AASHTOWare default values. They also discovered significant differences between state 

average axle load spectra and nationally recommended values. Ahn et al. (2009) developed axle 

load spectra for Arizona and concluded that Arizona default distribution factors perform better 

than national default distribution factors.  

The current study developed traffic volume adjustment factors from 11 AVC stations and 

axle load spectra and axle group per vehicle (AGPV) from 10 WIM stations to use as input 

parameters for design analysis of pavement structures in Kansas. Tables 3.5 and 3.6 list brief 

descriptions of WIM and AVC sites, respectively, used in this study. 

 
Table 3.5: WIM stations Used in This Study 

WIM Station County Route Functional Classification 

2WOA86 Seward US-54 Rural principal arterial 

3MXC22 Meade US-54 Rural principal arterial 

2OPUF5 Logan US-83 Rural principal arterial 

4LGSU3 Thomas I-70 Rural interstate 

9M4PS3 Saline I-70 Rural interstate 

9ORQP1 Sedgwick I-135 Urban interstate 

9Q9OK1 Sedgwick I-135 Urban interstate 

BWGAA6 Lyon I-35 Urban interstate 

DVMSP3 Douglas I-70 Urban interstate 

F07WC7 Wyandotte I-70 Urban interstate 
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Table 3.6: AVC Stations Used in This Study 
AVC Station County Route Functional Classification 
7XRME7 Kingman US-54 Rural principal arterial 
61ILJ3 Kiowa US-54 Rural principal arterial 
91TFY5 Republic US-81 Rural principal arterial 
AW9N83 Butler US-400 Rural principal arterial 
CTQ1D1 Brown US-36 Rural principal arterial 
CV64B3 Montgomery I-166 Rural principal arterial 
F10VD5 Bourbon US-61 Rural principal arterial 
0DT453 Sherman I-70 Rural principal arterial 
7HOM63 Russell I-70 Urban principal arterial 
9LON61 Sedgwick I-235 Urban principal arterial 
9Q9OK1 Sedgwick I-135 Urban principal arterial 

 

This study developed HDF and MAF values and Level 2 traffic inputs from data collected 

from the 11 AVC sites. AGPV and axle load spectra were also developed for rural and urban 

roadways in Kansas. 

3.4.1 Vehicle Class Factors 

VCFs refer to the frequency of trucks in each class from Class 4 to Class 13 (NCHRP, 

2004). Federal Highway Administration (FHWA) vehicle classes are shown in Figure 3.3. This 

study developed VCFs for rural and urban roadways from data generated by the AVC stations 

listed in Table 3.6. Figure 3.4 shows that, although average VCF values of rural roadways are 

close to default values in the PMED software, average VCF values for urban roadways in Kansas 

vary from AASHTOWare PMED default values, with a higher frequency of vehicle Classes 4 and 

9 on Kansas urban principal arterials.  
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Figure 3.3: FHWA Vehicle Classification 

Source: FHWA, 2016 
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Figure 3.4: Average VCFs for Rural (Left) and Urban (Right) Principal Arterials 

3.4.2 Monthly Adjustment Factors 

MAFs are defined as the fraction of yearly truck traffic in each month for a particular truck 

class. These factors include the distribution of truck volumes each month in a typical year 

(NCHRP, 2004). MAFs are influenced by factors such as adjacent land use, industry locations, 

and roadway locations (Khanum, 2005). 

Because Class 9 is the prevalent vehicle class in Kansas, this study utilized two-

dimensional clustering analysis with Class 9 MAF values derived from AVC stations listed in 

Table 3.6. Cluster analysis showed two distinctive patterns for rural and urban principal arterials. 

Average MAF values of vehicle Class 9 for rural and urban AVC stations are shown in Figure 

3.5. As shown in the figure, both rural and urban sites demonstrated higher MAF values in spring 

and summer seasons than in the winter. However, MAF values were shown to be higher for AVC 

stations on urban principal arterials than on rural principal arterials. 
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Figure 3.5: MAFs for Rural and Urban Principal Arterials in Kansas 

3.4.3 Hourly Distribution Factors 

HDFs are derived from AADTT at each hour of the day (NCHRP, 2004). Hourly 

distribution factors of truck traffic help compute incremental damage of PCC pavements at 

different thermal gradients over a 24-hour period (Khanum, 2005).  

This study generated HDF values for 11 AVC stations located on urban and rural principal 

arterials in Kansas and then categorized these values based on the functional class of the roadways. 

Average HDF values for rural and urban principal arterials are provided in Figure 3.6. Both rural 

and urban principal arterials showed HDF values that were higher during afternoon, evening, and 

night periods than AASHTOWare PMED software recommended.  
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Figure 3.6: HDFs for Rural and Urban Principal Arterials in Kansas 

3.4.4 Axle Load Spectra 

AASHTOWare PMED software requires the frequency of load applications at specific load 

intervals for each axle type (single, tandem, tridem, and quad) and vehicle class for every month 

of the year. Load distribution is 3,000–40,000 lbs at 1,000-lb intervals for single axles, 6,000–

80,000 lbs at 2,000-lb intervals for tandem axles, and 2,000–102,000 lbs at 3,000-lb intervals for 

tridem and quad axles. 

This study generated axle load spectra by processing “W” card data from the WIM stations 

listed in Table 3.5. In Kansas, WIM data is typically collected for short (48 hour) durations. The 

MEPDG recommends deriving axle load distribution for each month of the year, but previous 

research of traffic inputs for MEPDG using data from the GPS-5 section in Marion County, 

Indiana, indicated that variations in load spectra across the months within a year and along the 

years are insignificant (Tam & Von Quintus, 2003). Thus, this study assumed that load spectra 

derived from portable sites are representative throughout the year. Figure 3.7 shows the 

distribution of single and tandem axle loads for Class 9 trucks on rural and urban roadways in 

Kansas compared to default AASHTOWare PMED software.  
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Figure 3.7: Single (Left) and Tandem (Right) Axle Loads for Class 9 Trucks in Kansas 

 

Single-axle load distribution in Kansas rural traffic showed greater frequency between 

7,000 lbs and 16,000 lbs, whereas Kansas urban traffic showed greater frequency between 7,000 

lbs and 14,000 lbs. Overall traffic showed very low frequency above 20,000 lbs compared to 

AASHTOWare default values. 

For single-axle load distribution, Kansas rural traffic indicated higher frequency from 

6,000 lbs to 18,000 lbs, whereas Kansas urban traffic showed greater frequency between 6,000 lbs 

and 16,000 lbs. Both urban and rural traffic showed very low frequency above 20,000 lbs compared 

to AASHTOWare PMED default values. 

3.4.5 Axle Group per Vehicle 

The AASHTOWare PMED software requires AGPV and axle load spectra to compute 

average damage induced to pavement structures by truck traffic in each vehicle class (Romanoschi 

et al., 2011). In this study, average AGPV values for rural and urban roadways in Kansas were 

computed from the WIM data listed in Table 3.5. Table 3.7 shows Level 2 AGPV developed for 

Kansas. Traffic parameters developed for individual AVC and WIM stations are provided in the 

Appendix A.   
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Table 3.7: AGPV for Rural and Urban Roadways in Kansas 
Vehicle 
Class Kansas Rural Kansas Urban AASHTO ME Default 

 Single Tandem Tridem Quad Single Tandem Tridem Quad Single Tandem Tridem Quad 

4 1.90 0.28 - - 2.21 0.57 0.00 - 1.62 0.39 - - 

5 2.16 0.68 0.08 - 2.08 0.50 0.06 - 2.00 - - - 

6 1.32 1.70 - - 1.35 1.65 - - 1.02 0.99 - - 

7 2.20 0.80 0.10 0.13 1.87 0.96 0.92 0.45 1.00 0.26 0.83 - 

8 2.19 1.52 - - 2.30 1.49 - - 2.38 0.67 - - 

9 1.54 3.45 0.01 0.00 1.53 3.46 0.02 - 1.13 1.93 - - 

10 2.64 2.00 1.23 0.01 2.21 2.06 1.59 0.29 1.19 1.09 0.89 - 

11 4.00 0.00 - - 5.00 0.00 - - 4.29 0.26 0.06 - 

12 3.84 1.75 - - 3.99 2.01 - - 3.52 1.14 0.06 - 

13 2.53 0.82 0.55 - 3.70 1.07 - - 2.15 2.13 0.35 - 

 3.5 Pavement Cross-Section Inputs 

Pavement cross-section inputs including each bound and unbound layer except the semi-

infinite, bottommost subgrade layer are required for modeling in the PMED software (NCHRP, 

2004). This study collected layer thicknesses from the PMIS database. Kansas generally constructs 

AC overlay in one, two, or three layers on top of existing pavement sections. Depending on the 

project, the AC overlay can include a reflective crack interlayer (RCI) with a maximum thickness 

of 1 in. and an ultra-thin bonded asphalt surface (UBAS) layer with thickness varying from 0.5 

inches to 0.75 inches. AC-over-JPCP sections typically have a treated base beneath the PCC layer. 

Due to high plasticity, the top 6 inches of the subgrade layer is generally treated with lime or fly 

ash (Islam et al., 2017). AC-over-AC sections can be full depth or have an aggregate base 

depending on the AADTT of the pavement segment. Schematics of typical AC-overlaid pavement 

sections are shown in Figure 3.8. Site-specific structural information of selected rehabilitated AC 

sections is presented in Appendix B. 

 



44 

 
Figure 3.8: Schematic of Rehabilitated Pavement Structures in Kansas 

3.5.1 PMED Modeling of AC-Over-AC Sections 

The maximum number of AC overlay that can be modeled in the PMED software is four 

(AASHTO, 2010). Pavement repairs and milling of the existing surface layer can also be 

incorporated into PMED. This study modeled 25 AC-over-AC sections using the AASHTOWare 

PMED software. A detailed description of how the AC-over-AC sections were modeled is 

provided below. AC mixture properties are provided in Appendix C. 

• Project KA-0310-01 is a full-depth AC pavement on route US-75 in Osage 

County. The existing HMA layer, constructed in October 1998, consisted of a 

1-inch surface course (0.375 inches nominal maximum aggregate size 

[NMAS]), 4-inch binder course (0.75 inches NMAS) and 6-inch bituminous-

treated base (BTB) course (0.75 inches NMAS). A 2-inch overlay (0.5 inches 

NMAS) was placed in September 2006. The section was modeled with three 

existing HMA layers and a 2-inch overlay.  

• Project K-9364-01 on K-92 in Jefferson County was constructed in June 1999. 

This project consisted of a 1.5-inch AC surface course and a 3.5-inch base 

course on top of a 4-inch aggregate base layer. In April 2004, a 2-inch overlay 

was placed with two AC courses: a 1-inch course with 0.75 inches NMAS and 

another 1-inch course with 0.375 inches NMAS. AC mixture properties are 



45 

provided in Appendix B. In 2009, chip seal was placed on this section as a 

maintenance activity. The project was modeled with a 4-inch aggregate base, 

two existing HMA layers, and two separate 1-inch layers as overlays. The 

section was analyzed for a 5-year design period, and the chip seal action was 

not considered in PMED calibration.  

• Project KA-2188-01, a full-depth HMA pavement constructed in April 2002, 

consisted of a 2.5-inch surface course and an 11.5-inch base course. In 2014, a 

6-inch overlay was placed after a 2-inch profile mill. The 6-inch overlay was 

placed in two courses: PG 58-28 binder in the bottom 2 inches and PG 64-28 

in the top 4 inches. To model this section, the milled thickness had to be 

deducted from the existing AC thickness. The section was then modeled with 

an existing AC thickness of 12 inches with two separate AC overlay courses.  

• Project KA-0813-01 in US-36 in Washington County was constructed in July 

2000. This section consisted of a 1.5-inch surface course and a 7.1-inch base 

course on top of a 12.6-inch aggregate base course. Modified slurry seal was 

placed in 2004. In 2007, a 1.5-inch overlay was placed after a 0.5-inch profile 

mill. In 2007, chip seal was placed on this section as a maintenance activity. 

The chip seal action was not considered for this study, so analysis was 

conducted until year 2007. However, PMED modeling had to account for 

slurry seal thickness, so the slurry seal was assumed to be a 0.4-inch layer per 

KDOT recommendation. This section was designed with two existing AC 

layers: a 1.4-inch surface layer of existing AC and a 7-inch base layer of 

existing AC followed by a 1.5-inch AC overlay.  

• Project KA-9466-01 on route I-70 in Saline County was reconstructed in 

October 2007. This project consisted of a 1-inch surface course, 7-inch 

intermediate course, and 9-inch base course on top of a 6-inch fly ash 

modified bituminous subbase. In November 2004, the 1-inch surface course 

was milled off, and a 3-inch overlay was placed in two courses: a 1.5-inch 

overlay surface course (0.375 inches NMAS) and a 1.5-inch overlay base 
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course (0.75 inches NMAS). In 2012, a UBAS layer was placed as a 

maintenance action. This layer was not modeled in this study, and analysis 

was conducted up to 2012. The section was then modeled with two existing 

AC layers and with two separate AC overlay layers.  

• Project KA-2628-01 on I-70 in Saline County was reconstructed in June 1996. 

The eastbound section had a 2-inch surface course and an 8.2-inch base 

course. The westbound section had a 2-inch surface course, 2-inch 

intermediate course, and 10.4-inch base. Only the eastbound section was 

analyzed in this study. In November 2004, the surface course was milled off, 

and a 3-inch overlay and 0.625-inch UBAS layer were placed. Since 

AASHTOWare PMED software does not define pavement layer thinner than 

1.0 inch, UBAS surfaces could not be considered as individual layers. Instead, 

the thickness of the UBAS layer was added to the AC overlay layer per 

KDOT suggestion, so that the total thickness of the overlay layer remained 

constant. Even though the aggregate gradation and binder content in the 

UBAS layer differed from the underlying AC layer, it was assumed that 

differences of material properties of such a thin layer would not significantly 

alter performance prediction. In 2012, the highway segments were again 

rehabilitated with 2-inch milling and a 3-inch overlay. The second overlay 

was not modeled in this study, and the analysis was conducted up to 2012. 

Thus, the section was modeled with two existing AC layers and a 3.625-inch 

AC overlay.  

• Project KA-2923-01 was constructed in 1999 and consisted of a 2-inch 

surface course and a 5.5-inch base course on top of a 6-inch bound drainable 

course and a 9.5-inch AB-3 aggregate base course. In 2013, the top 1 inch of 

the surface course was milled off, and a 1.5-inch overlay was placed. The 

section was modeled with two existing AC layers and a 1.5-inch overlay. 

• Project KA-4013-01 on US-24 in Osbourne County was reconstructed in April 

2004. This project consisted of a 1.5-inch surface course, 2.5-inch 
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intermediate course, and 8-inch base course on top of a 5.5-inch aggregate 

base. Chip seal was placed in 2007 as a rehabilitation action. In May 2015, the 

chip seal was milled off and a 1.5-inch overlay (0.5 inches NMAS) was 

placed. The section was modeled with three layers of existing HMA and a 1.5-

inch overlay. 

• Project KA-1436-01, is a full-depth AC pavement on US-36 in Cheyenne 

County, was constructed in September 1996. This project consisted of a 1.5-

inch surface course and an 8.5-inch base course. Modified slurry seal was 

placed in 2004, and a 1.5-inch overlay was placed in August 2009. The 

section was then modeled with two existing AC layers: a 1.9-inch surface 

layer of existing AC and an 8.5-inch base layer of existing AC followed by a 

1.5-inch AC overlay. 

• KA-1444-01 pavement section on route US-183 is in Phillips County 

(mileposts 15.00–32.00). The segment of highway from mileposts 15.00 to 

22.75 was reconstructed in 1995, and the segment from milepost 22.75 to 

milepost 32.00 was reconstructed in 1994. Because initial construction of the 

two highway segments was one year apart, they were analyzed as separate 

sections: KA-1444-01(1) and KA-1444-01(2). The existing AC layer of the 

entire segment consisted of a surface course of 1.5 inches and a base course of 

5 inches. In 2002, the surface course was milled 0.5 inches, and a 1.5-inch 

overlay was placed in 2002, while a 1-inch milling was done, followed by a 

1.5-inch overlay, in 2009. In October 2017, a 1-inch milling was done, and a 

2-inch overlay was placed. The third overlay action was not considered for 

analysis in this study because there was insufficient measured distress data for 

calibration. The second rehabilitated action was considered the overlay layer; 

everything beneath was considered the existing AC layer.  

• Project KA-2505-01 on US-183 in Rooks County was reconstructed in August 

2002. This project consisted of a 1-in. surface course and a 6.3-in. base 

course. Chip seal was placed in 2008 as a rehabilitation action. In June 2012, 
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1.5 in. of the top surface was milled off, and a 2-in. overlay (0.5 in. NMAS) 

was placed. The section was modeled with three layers of existing HMA and a 

1.5-in. overlay. The chip seal thickness was assumed to be 0.5-in. per KDOT 

recommendation. The section was then modeled with a 6.3-in. existing AC 

layer followed by a 2-in. AC overlay. 

• Project KA-2966-01 on US-183 in Ellis County was reconstructed in 1997. 

This project consisted of a 1-in. surface course and a 9-in. base course. 

Bituminous seal was placed in 2004 as a rehabilitation action. A 1.5-in. 

overlay was placed in November 2013 (0.5 in. NMAS). The section was then 

modeled with two existing AC layers: a 1.4-in. surface layer of existing AC 

and a 9-in. base layer of existing AC followed by a 1.5-in. AC overlay. 

• Project KA-3674-01 on route US-283 in Norton County was reconstructed in 

May 2003. This project consisted of 1.5-in. surface course, 2.5-in. 

intermediate course, and 8-in. base course. Chip seal was placed in 2007 as a 

rehabilitation action. In May 2015, the chip seal was milled off, and a 1.5-in. 

overlay (0.5 in. NMAS) was placed. The section was modeled with three 

layers of existing HMA and a 1.5-in. overlay. 

• Project K-0657-01 on US-69 in Bourbon County was reconstructed in 1995. 

This project consisted of a 1-in. surface course and a 10.5-in. base course. 

Modified slurry seal was placed in 2004 as a preventive action. The seal was 

then milled off, and a 1.5-in. overlay was placed in October 2007 (0.5 in. 

NMAS). The section was modeled with two existing AC layers: a 1-in. 

surface layer of existing AC and a 9-in. base layer of existing AC followed by 

a 1.5-in. AC overlay. 

• Project KA-0811-01 on US-75 in Montgomery County was reconstructed in 

July 1998. This project consisted of a 1-in. surface course, 2.5-in. intermediate 

course, and 3-in. base course on top of a 6-in. bound drainable course and an 

11-in. aggregate base course. This project was overlaid in August 2007 with a 
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1-in. AC layer. The project was modeled with three existing AC layers 

followed by a 1-in. overlay. 

• Project K-7756-01 on US-166 in Chautauqua County was reconstructed in 

March 1997. This project consisted of a 1-in. surface course and a 7-in. base 

course on top of a 6-in. bound drainable course and an 11-in. aggregate base 

course. This project was overlaid in March 2000 with a 2-in. AC layer. The 

project was modeled with the two existing AC layers followed by the 2-in. 

overlay. 

• Project KA-2200-01 on US-169 in Allen County was constructed in May 

2000 and consisted of a 2-in. surface course, 3-in. intermediate course, and 6-

in. base course. In 2003, modified slurry seal was placed. In 2008, a 0.625-in. 

UBAS was placed as a preventive action. In 2015, a 4-in. cold mill was 

conducted, and a 7-in. overlay was placed in two courses: a 3-in. overlay 

surface course (0.5 in. NMAS) and a 4-in. overlay base course (0.75 in. 

NMAS). The section was modeled with two existing AC layers of a 2-in. 

intermediate layer of existing AC and a 6-in. base layer of existing AC, as 

well as two separate AC overlay layers: a 3-in. AC surface layer and a 4-in. 

AC base layer.  

• Project KA-2204-01 on US-169 in Anderson County was constructed in April 

2000 and consisted of a 1.5-in. surface course, 2-in. intermediate course, and 

4-in. base course. In 2003, a modified slurry seal was placed. In 2015, 4-in. 

deep cold milling was done, and a 7-in. overlay was placed. The section was 

modeled with an existing AC layer of 4 in. followed by the 7-in. AC overlay 

layer. 

• Project KA-2941-01 on US-77 in Butler County was constructed in August 

2004 and consisted of a 1.5-in. surface course, 2.5-in. intermediate course, and 

8-in. base course. In 2013, a 1.5-in. overlay was placed. The project was 

modeled with the three existing AC layers and a 1.5-in. overlay. 
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• Project KA-4192-01 on US-77 in Butler County was reconstructed in June 

2004 and consisted of a 1.5-in. surface course, 2.5-in. intermediate course, and 

4-in. base course on top of an 11-in. aggregate base layer. In 2009, a 0.5-in. 

UBAS layer was placed as a maintenance action, and a 1.5-in. overlay was 

placed in 2013. The project was modeled with three existing AC layers and a 

1.5-in. overlay. The UBAS layer was not modeled separately and added to the 

1.5-in. surface course of the existing AC layer. 

• Project KA-1460-01 on US-166 in Cowley County was constructed in August 

1996 and consisted of a 1.5-in. surface course and a 7-in. base course on top 

of a 6-in. bound drainable course and a 7-in. aggregate base course. In 1999, 

0.5-in. of the surface course was milled off and a 2-in. overlay (0.5 in. 

NMAS) was placed. In 2009, a 0.5-in. deep milling was done, and a 1.5-in. 

(0.5 in. NMAS) overlay was placed. The first overlay action was considered 

an existing layer; thus, the section was modeled with three existing AC layers: 

a 1.5-in. AC layer overlaid in 1999, a 1-in. remaining AC surface layer from 

1996, and a 7-in. base layer from 1996 followed by the 1.5-in. overlay placed 

in 2009.  

• Project KA-3496-01 on K-254 in Sedgwick County was constructed in August 

1998. This project had a 1-in. surface course (0.375 in. NMAS), a 1-in. 

intermediate course (0.75 in. NMAS), and a 5.5-in. base course (0.75 in. 

NMAS) on top of a 6-in. bound drainable course and a 7-in. aggregate base 

course. In 2004, the section was treated with modified slurry seal, the seal was 

milled off, and a 1.5-in. (0.5 in. NMAS) overlay was placed. The project was 

modeled with three existing layers followed by the AC overlay. 

• Project KA-1480-01 on US-160 in Clark County was constructed in October 

1998. This project consisted of a 1.5-in. surface course and an 8.5-in. base 

course. In May 2009, 1-in. deep cold milling was conducted, and a 1.5-in. 

overlay (0.5 in. NMAS) was placed. The remaining 0.5-in. thickness of the 
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existing AC surface course could not be modeled separately, so the existing 

AC was modeled as one layer with a 9-in. thickness.  

• Project KA-8431-01 on US-83 in Seward County was constructed in August 

1995 and consisted of a 1-in. surface course and a 13-in. base course. The 

project was overlaid in October 2001 with 1-in. AC layer. The project was 

modeled with the two AC existing layers followed by the overlay. 

3.5.2 PMED Modeling of AC-Over-JPCP Sections 

This study modeled 18 AC-over-JPCP sections using the AASHTOWare PMED software. 

PMED allows a maximum of three HMA layers for modeling the overlay on JPCP sections 

(AASHTO, 2010). Mixture information required for HMA must be specified for each layer. 

Required AC mixture properties are provided in Appendix B. A detailed description of how the 

AC-over-JPCP sections were modeled is provided below. 

• Project K-7823-01 on route K-7 in Johnson County was constructed in June 

1986. This section consisted of a 9-inch PCC layer on top of a 4-inch Portland 

cement-treated base (PCTB). In June 2000, a 4-inch overlay was placed in two 

courses: a 1.5-inch overlay surface course (0.375 inches NMAS) and a 2.5-

inch overlay base course (0.75 inches NMAS). In 2013, a 0.625-inch UBAS 

layer was placed as a maintenance action. The UBAS layer was not modeled 

in this study, and analysis was conducted up to 2012. The section was 

modeled with 9-inch PCCP and 4-inch PCTB with two layers of HMA on top.  

• Project KA-2836-01 on I-70 in Shawnee County was constructed in 2003 and 

consisted of a 12-in. PCCP on top of a 4-in. PCTB. In June 2013, a 4-in. 

overlay was placed in two courses: a 1.5-in. overlay surface course (0.375 in. 

NMAS) and a 2.5-in. overlay base course (0.5 in. NMAS). The section was 

modeled with 9-in. PCC and 4-in. PCTB with two layers of HMA on top. 

• Project KA-4136-01 on I-70 in Shawnee County was constructed in July 1993 

and consisted of a 10.5-in. PCC on top of a 4-in. PCTB. PCC patching and 

joint repair actions were performed in 2011. In 2015, a 3-in. overlay was 
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placed (0.5 in. NMAS) followed by a 0.625-in. UBAS layer. UBAS surfaces 

could not be considered as individual layers. The thickness of the UBAS layer 

was added to the AC overlay layer, so a total 3.625-in. AC overlay was 

modeled on top of a 9-in. PCCP and 4-in. PCTB. Even though the aggregate 

gradation and binder content in the UBAS layer differed from the underlying 

AC layer, it was assumed that differences of material properties in the UBAS 

layer would not significantly alter performance prediction. 

• Project KA-2669-01 on US-54 in Shawnee County was constructed in June 

2003 and consisted of an 11-in. PCC on top of a 4-in. BTB. In 2012, a 3-in. 

overlay was placed (0.5 in. NMAS). The section was modeled with 11-in. 

PCCP and 4-in. PCTB with a 3-in. HMA layer on top.  

• Project KA-2835-01 on I-70 in Wabaunsee County was constructed in June 

2004. This section had 12-in. PCC on top of a 4-in. bound drainable base 

(BDB). In June 2013, a 4-in. overlay was placed in two courses: a 1.5-in. 

overlay surface course (0.375 in. NMAS) and a 2.5-in. overlay base course 

(0.5 in. NMAS). The section was modeled with 12-in. PCC and 4-in. BDB 

with two layers of HMA on top. 

• Project KA-3282-01 on I-70 in Wyandotte County was constructed in May 

1989. This project consisted of a 10-in. PCC on top of a 4-in. BTB. PCC 

patching was performed in 2002 and 2006. In 2014, a 3-in. overlay was placed 

(0.5 in. NMAS), followed by a 0.625-in. UBAS layer. The thickness of the 

UBAS layer was added to the AC overlay layer, meaning that a 3.625-in. AC 

overlay was modeled on top of a 9-in. PCCP and a 4-in. BTB. 

• Project KA-1951-01 on US-50 in Chase County was constructed in 1997. This 

project consisted of a 10-in. PCC on top of a 4-in. PCTB. In August 2011, a 3-

in. overlay was placed (0.5 in. NMAS). The section was modeled with 10-in. 

PCCP and 4-in. PCTB with a 3-in. HMA layer on top.  

• Project KA-2682-01 on K-150 in Chase County was constructed in August 

2003. This project consisted of a 9.5-in. PCC on top of a 4-in. cement treated 
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base (CTB). In December 2012, a 3-in. overlay was placed (0.5 in. NMAS). 

The section was modeled with 10-in. PCCP and 4-in. CTB with a 3-in. HMA 

layer on top.  

• Project KA-1931-01 on US-81 in Cloud County was constructed in November 

1998. This project consisted of a 9-in. PCC on top of a 4-in. BDB. Crack 

sealing on PCC was done in 2004. In December 2012, a 3-in. overlay was 

placed (0.5 in. NMAS), followed by a saw-and-seal operation. The section 

was modeled with 10-in. PCCP and 4-in. BDB with a 3-in. HMA layer on top.  

• Project KA-1950-01 on US-50 in Marion County was constructed in 

November 2011. This project consisted of a 9-in. PCC on top of a 4-in. BDB. 

In August 2011, a 3-in. overlay was placed (0.5 in. NMAS). The section was 

modeled with 9-in. PCC and 4-in. BDB with a 3-in. HMA layer on top.  

• Project KA-2681-01 on K-57 in Marion County was constructed in August 

2003. This project consisted of a 9.5-in. PCC on top of a 4-in. PCTB. In 

December 2012, a 3-in. overlay was placed (0.5 in. NMAS), followed by a 

saw-and-seal operation. The section was modeled with 9.5-in. PCC and 4-in. 

PCTB with a 3-in. HMA layer on top.  

• Project KA-4036-01 is in the eastbound direction of I-70 in Sherman County. 

This project consisted of a 10-in. PCC on top of a 4-in. PCTB. In December 

2015, a 3-in. overlay was placed in two courses: a 1.5-in. overlay surface 

course (0.5 in. NMAS, PG 70-28) and a 1.5-in. overlay base course (0.5 in. 

NMAS, PG 70-28). The section was modeled with 10-in. PCC and 4-in, 

PCTB with two layers of HMA on top. 

• Project KA-3848-01 on US-400 in Labette County was constructed in May 

1997. This project consisted of a 9-in. PCC on top of a 4-in. BDB. In 

September 2015, a 0.625-in. UBAS layer and a 2.5-in. AC overlay (0.5 in. 

NMAS) were placed on top of a 1-in. RCI. The thickness of the UBAS layer 

was added to the 2.5-in. AC layer: thus, the AC overlay was modeled in two 

layers: a 3.125-in. AC layer on top of a 1-in. RCI.  



54 

• Project KA-2001-01 on K-254 in Butler County was constructed in September 

1995. This project consisted of a 9-in. PCC on top of a 4-in. treated base. In 

October 2011, a 0.625-in. UBAS layer and a 2-in. AC overlay (0.5 in. NMAS) 

was placed on top of a 1-in. RCI. The thickness of the UBAS layer was added 

to the 2-in. AC layer: thus, the pavement section was modeled with two AC 

layers: a 2.625-in. AC layer on top of the 1-in. RCI followed by the 9-in. PCC 

and the 4-in. PCTB.  

• Project KA-4236-01 on I-135 in Harvey County was constructed in March 

2000. This section consisted of an 11-in. PCC on top of a 4-in. BDB. In May 

2011, significant PCC repair activities were performed, including 

polyurethane concrete raising, tie-bar insertion, and partial depth PCC 

patching. In October 2011, a 3.5-in. AC overlay (0.5 in. NMAS) was placed 

on top of a 1-in. RCI. The pavement section was modeled with two AC layers: 

a 3.5-in. AC layer on top of the 1-in. RCI, followed by the 11-in. PCC and the 

4-in. BDB.  

• KA-0378-01 pavement section on route US-50 is also located in Harvey 

County, beginning from milepost 27.00 to milepost 35.56. Highway segment 

from milepost 28.64 to milepost 35.56 was constructed in February 1995, and 

mile post 27.00 to milepost 28.64 was constructed in August 1997. PCC 

thickness from milepost 27.00 to 28.64 is 10 in., while PCC thickness from 

milepost 28.64 to 35.56 is 9 in. Both segments had a 4-in. PCTB beneath the 

PCC layer. These two segments were analyzed as separate sections. Highway 

segment from milepost 28.64 to milepost 35.56 was named KA-0378-01(1), 

and highway segment from milepost 27.00 to milepost 28.64 was named KA-

0378-01(2). Segment KA-0378-01(1) underwent significant PCC crack repair 

in 2001 and 2005. In May 2006, a 0.5625-in. UBAS layer and a 2-in. AC 

overlay (0.5 in. NMAS) was placed on top of a 1-in. RCI in both segments. 

Section KA-0378-01(1) was modeled with two AC layers: a 2.57-in. AC layer 

on top of the 1-in. RCI, followed by the 9-in. PCC. Section KA-0378-01(2) 
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was modeled with two AC layers: a 2.57-in. AC layer on top of the 1-in. RCI, 

followed by the 10-in. PCC. 

• Project KA-3006-01 on K-156 in Finney County was constructed in May 

1986. This section consisted of a 9-in. PCC on top of a 4-in. BTB. In 2008, a 

1.5-in. AC overlay was placed. In March 2013, the 1.5-in. HMA was milled 

off, and a 2-in. overlay (0.5 in. NMAS) was placed. The section was modeled 

with 9-in. PCC and 4-in. BTB with a 2-in. HMA layer on top.  

 3.6 Material Inputs 

AASHTOWare software requires layer material properties that represent conditions right 

after construction for new pavement layers (NCHRP, 2004). Whenever available, this study 

collected as-constructed material properties for the new layers at the time of construction. The 

pavement design team at KDOT amassed the in-situ material properties after reviewing the CMS 

database for the selected AC-over-JPCP sections. In addition, quality control-quality assurances 

spreadsheets were available for eight projects.  

3.6.1 AC Layer Properties 

AASHTOWare PMED software requires mixture volumetrics and HMA mechanical and 

thermal properties to characterize the AC overlay. Mixture volumetrics include percent air void, 

effective binder content, Poisson’s ratio, and unit weight of the HMA mix. AASHTOWare 

software requires the air void percentage of the HMA mix to be representative of as-constructed 

pavement. The target air void at Ndesign level was recorded in the CMS for all HMA mixes for the 

projects listed in Tables 3.3 and 3.4. However, the target air void does not represent the in-situ air 

void at the time of construction. In this study, percent air void was 7% for all HMA mixes since 

KDOT aims for 93% ± 1% compaction at the time of construction. The HMA unit weight for all 

projects was recorded in the CMS. The range of unit weight for the AC overlay of selected JPCP 

rehabilitation projects was 125–155 lb/ft3. Figure 3.9 shows the variation of AC unit weight in the 

HMA mixes for the selected JPCP rehabilitated sections. The effective binder content (by volume) 

was computed by subtracting the AC target air void from AC void in mineral aggregate (VMA). 



56 

The distribution of effective binder content for all HMA mixes for the selected pavement sections 

is presented in Figure 3.10. The Poisson’s ratio for all HMA mixes was assumed to be 0.35. 

 

 
Figure 3.9: AC Unit Weight Distribution of HMA Mixes 

 

 
Figure 3.10: Effective Binder Content Distribution of AC Mixes for Existing Pavement  

 

AASHTOWare PMED software requires information about asphalt binder, creep 

compliance, dynamic modulus, and indirect tensile strength of the asphalt mix to characterize 

mechanical properties. For Level 1 analysis, the software requires dynamic modulus |E*| of the 

AC mix at a minimum of three temperatures and three frequency levels. In addition, binder 
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complex modulus (G*) and phase angle (δ) values are required at a minimum of two temperatures 

(Kim et al., 2011). For Level 2 analysis, the software requires mixture aggregate gradations, binder 

G* and δ values. For Level 3 analysis, mixture aggregate gradation and asphalt binder performance 

grade (PG) information is required. This study used site-specific aggregate gradations and PG 

binder grade values to generate HMA mechanical properties. Site-specific AC layer properties of 

the pavement sections are provided in Appendix C.  

3.6.2 JPCP Layer Properties 

Input parameters required to characterize JPCP layers include thickness, Poisson’s ratio, 

unit weight, coefficients of thermal expansion (CTE), PCC heat capacity, and PCC thermal 

conductivity. Aggregate type, cement content, and water-cement ratio (w/c ratio) are required 

inputs for the concrete mix. Furthermore, JPCP design parameters such as dowel diameter and 

spacing, PCC joint spacing, and PCC erodibility index are also required (Haider et al., 2014).  

3.6.2.1 JPCP Mix Inputs 

In this study, the CTE value for limestone and non-limestone aggregates was chosen to be 

5.5 × 10-6 in/in/°F per KDOT suggestion. PCC 28-day compressive strength and flexural strength 

values were extracted from the CMS database. Table 3.8 lists the compressive strength, 𝑓𝑓𝑐𝑐′ and 

modulus of rupture (MOR) values for the selected JPCP projects.  
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Table 3.8: Strength Properties of Mixes for the Selected JPCP Sections 

Project Route County 
PCC 

thickness 
(inch) 

Cement 
content 
(lb./yd3) 

w/c 
ratio 

𝑓𝑓𝑐𝑐′ 
@28 
days 
(psi) 

MOR 
age 

(days) 

MOR 
(psi) 

KA-2836-01 I-70 Shawnee 12.0 521 0.43 4,590 2 597 

KA-4136-01 I-70 Shawnee 10.5 620 0.49 - - - 

KA-4036-01 I-70 Sherman 10.0 565 0.45 5,064 4 566 

KA-2835-01 I-70 Wabaunsee 12.0 521 0.44 4,598 4 695 

KA-3282-01 I-70 Wyandotte 10.0 620 0.49 - - - 

KA-4236-01 I-135 Harvey 11.0 545 0.44 - 7 535 

KA-1950-01 US-50 Marion 10.0 620 0.43 - 7 521 

KA-1951-01 US-50 Chase 10.0 620 0.42 5,385 7 474 

KA-0378-01(1) US-50 Harvey 9.0 639 0.44 - 5 455 

KA-0378-01(2) US-50 Harvey 10.0 620 0.43 - 4 478 

KA-2669-01 US-54 Shawnee 11.0 521 0.44 4,890 3 537 

KA-1931-01 US-81 Cloud 9.0 620 0.46 4,781 3 563 

KA-3848-01 US-400 Labette 9.0 592 0.46 4950 - - 

K-7823-01 K-7 Johnson 9.0 623 0.46 - - - 

KA-2681-01 K-57 Marion 12.0 545 0.45 - 7 541 

KA-2682-01 K-150 Chase 9.5 545 0.45 - 6 542 

KA-3006-01 K-156 Finney 9.0 620 0.49 - - - 

KA-2001-01 K-254 Butler 9.0 620 0.44 - 4 497 

 

PMED software requires 7-, 14-, 28-, and 90-day PCC elastic modulus and MOR values 

for Level 1 input. In addition, ratio of 20-yr to 28-day elastic modulus and MOR values are also 

required. For Level 2 input, 7-, 14-, 28-, and 90-day PCC compressive strength and the ratio of 20-

yr to 28-day compressive strength are needed (AASHTO, 2015).  

Laboratory-tested 7-, 14-, 28-, and 90-day PCC elastic modulus and MOR values were not 

available for this study. A predictive model (Equation 3.8), developed under an FHWA (2012) 

project, was used to determine 7-, 14-, 28-, and 90-day PCC compressive strength. This model was 
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developed using SPS sections to predict concrete cylinder strength up to 1 year. Figure 3.11 

presents compressive strength gain using the FHWA short-term predicting model over time. 

𝑓𝑓𝑐𝑐𝑡𝑡 = 6358.60655 + 3.53012 ∗ 𝑅𝑅𝐶𝐶𝑅𝑅 − 34.24312 ∗ 𝑤𝑤
𝑐𝑐
∗ 𝑢𝑢𝑢𝑢 + 633.3489 ∗ ln (𝑡𝑡)  

 Equation 3.8 
Where: 

 𝑓𝑓𝑐𝑐𝑡𝑡 = Compressive strength at age t years, psi; 

CMC = Cementitious materials content, lb/yd3; 

w/c = Water to cement ratio;  

uw = Unit weight, lb/yd3; and 

t = Short-term age up to 1 year. 

 
 

 
Figure 3.11: Strength Gains over Time for Selected JPCP Projects 

 

The long-term concrete strength model developed under the FHWA (2012) project was 

used to determine the 20-year compressive strength. Equation 3.9 lists the long-term compressive 

strength model. 
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𝑓𝑓𝑐𝑐,𝐿𝐿𝑇𝑇 = −3467.3508 + 3.63452 ∗ 𝑅𝑅𝐶𝐶𝑅𝑅 + 0.42362 ∗ 𝑢𝑢𝑢𝑢2  
 Equation 3.9 

Where: 

 𝑓𝑓𝑐𝑐,𝐿𝐿𝑇𝑇 = Compressive strength at age t (variable up to 20 years), psi;  

CMC = Cementitious materials content, lb/yd3; and 

uw = Unit weight, lb/yd3. 

For Level 3 analysis, the software requires the following combination of 28-day 

compressive strength, 28-day elastic modulus, and 28-day MOR (Islam, Hossain, & Jones, 2019): 

• 28-day compressive strength only 

• 28-day MOR only 

• 28-day compressive strength and 28-day elastic modulus 

• 28-day MOR and 28-day elastic modulus 

All four options were used in this study to analyze the selected JPCP sections with the 

PMED software. The 28-day MOR, however, was not available for any of the projects, and the 28-

day MOR and 𝐸𝐸𝑐𝑐  were estimated using the standard empirical Equations 3.10 and 3.11 

(AASHTO, 2015). 

𝐸𝐸𝑐𝑐 = 57000�𝑓𝑓𝑐𝑐′   
 Equation 3.10 
𝐶𝐶𝑀𝑀𝑅𝑅 = 9.5�𝑓𝑓𝑐𝑐′   
 Equation 3.11 

3.6.2.2 JPCP Design Inputs 

In this study, project-specific PCC thickness and joint spacing, cement content, w/c ratio, 

and aggregate type information were extracted from the CMS database. Dowel diameters and 

dowel spacing information were also available in the CMS database. Dowel spacing was 12 inches 

for each of the selected JPCP sections. Site-specific JPCP design input parameters are listed in 

Table 3.9. 
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Table 3.9: Site-specific JPCP Design Input Parameters 

Project Route County Slab 
width 

Dowel 
diameter (in.) 

PCC joint 
spacing (in.) 

Tied 
shoulder 

KA-2836-01 I-70 Shawnee 12 1.5 15 Yes 

KA-4136-01 I-70 Shawnee 12 1.375 30 Yes 

KA-4036-01 I-70 Sherman 12 1.25 15 Yes 

KA-2835-01 I-70 Wabaunsee 12 1.5 15 Yes 

KA-3282-01 I-70 Wyandotte 12 1.25 20 Yes 

KA-4236-01 I-135 Harvey 12 1.375 15 Yes 

KA-1950-01 US-50 Marion 12 1.25 15 Yes 

KA-1951-01 US-50 Chase 12 1.25 15 Yes 

KA-0378-01(1) US-50 Harvey 12 1.125 15 Yes 

KA-0378-01(2) US-50 Harvey 12 1.125 15 Yes 

KA-2669-01 US-54 Shawnee 12 1.375 15 Yes 

KA-1931-01 US-81 Cloud 12 1.25 15 Yes 

KA-3848-01 US-400 Labette 12 1.125 15 Yes 

K-7823-01 K-7 Johnson 12 1.5 15 No 

KA-2681-01 K-57 Marion 15 1.25 15 No 

KA-2682-01 K-150 Chase 15 1.25 15 No 

KA-3006-01 K-156 Finney 12 1.125 15 Yes 

KA-2001-01 K-254 Butler 1.125 12 15 Yes 

3.6.3 Base Layer Inputs 

All selected AC-over-JPCP sections have a treated base layer beneath the PCC layer. PCTB 

and BDB were used in the selected sections. Required inputs of the base layers for the PMED 

software are presented in Table 3.10. Values of these input parameters were suggested by KDOT. 
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Table 3.10: Input Parameters of the Base Layer 
Base layer type Thickness Elastic/Resilient Modulus (psi) Poisson’s ratio 

PCTB Project-specific 1,000,000 0.2 

BDB Project-specific 650,000 0.35 

3.6.4 Subgrade Soil Inputs 

The subgrade soil of the selected AC-over-JPCP sections were A-6 and A-7-6. The top 6- 

inch layer of all selected projects was treated with lime or fly ash or mechanically stabilized, and 

the top 18 inches of the subgrade was compacted to 95% of the maximum dry density on all 

projects. County-wise resilient modulus (MR) data were provided by KDOT. Subgrade soil 

gradation and Atterberg limits values were extracted from the soil survey reports of the Soil 

Conservation Service for each county. The resilient modulus of the lime or fly ash-treated subgrade 

layer was computed using Equation 3.12 (Sun et al., 2015). The county-wise subgrade soil 

properties are presented in Appendix B. 

Treated subgrade MR = (2.03 x untreated subgrade MR) + 225  
 Equation 3.12 

 3.7 Climatic Inputs 

Environmental conditions, specifically moisture and temperature, significantly affect rigid 

and flexible pavement performance (NCHRP 1-37A). Unbound layer material performance 

generally is affected by moisture change, and bound layer material performance is affected by the 

temperature gradient (Kim et al., 2011). The Enhanced Integrated Climatic Model (EICM) 

incorporated in the AASHTOWare PMED software considers moisture and temperature effects on 

pavement response (AASHTO, 2015). The EICM is a heat and moisture flow program that 

simulates changes in material properties over time by considering climatic data of the closest 

weather station. These climatic data include air temperature, relative humidity, precipitation, wind 

speed, sunshine percentage, and rainfall.  

The AASHTOWare PMED version 2.5 incorporates modern-era retrospective analysis for 

research and application (MERRA) climatic data developed by the National Aeronautics and 
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Space Administration (NASA). The MERRA database includes uniformly gridded meteorological 

data at an hourly temporal resolution and 0.5 degrees latitude by 0.67 degrees longitude 

(approximately 31 miles by 37 miles at mid-latitudes) spatial resolution over the entire globe 

(Ziedan, 2017). This study used project coordinates for all selected rehabilitated sections as site-

specific values, or Level 1 inputs.  

 3.8 Evaluation of KDOT Distress Data 

In 2013, KDOT began using the laser crack measurement system (LCMS) to collect 

automated pavement distress data on the entire road network. Since then, KDOT has conducted 

windshield surveys to manually collect distress data. LCMS-generated automated distress data 

were primarily used in this study. However, for pavement sections overlaid prior to 2013, manually 

collected distress data were used. 

3.8.1 Laser Crack Measurement System 

The LCMS consists of two high-performance three-dimensional (3-D) laser profilers that 

measure complete transverse road profiles with 1-mm resolution at highway speed. Figure 3.12 

shows the KDOT LCMS system used in this study. The z-axis resolution is 0.1 mm in the figure. 

The 3-D laser profilers use high-power laser line projectors, custom filters, and a camera as the 

detector. The light strip is projected onto the pavement, and the camera captures its image. The 

shape of the pavement is acquired as the inspection vehicle travels along the road using a signal 

from an odometer to synchronize the sensor acquisition. All images coming from the camera are 

sent to the frame grabber to be digitized and processed by the central processing unit. Saving the 

raw images would require storing nearly 30 GB per kilometer at 100 km/h, but the use of lossless 

data compression algorithms for the 3-D data and fast jpeg compression on the intensity data brings 

the data rate down to a manageable 20Mb/s or 720Mb/km (Laurent et al., 2017). The high 

resolution 3-D data acquired by LCMS is then processed using proprietary algorithms that were 

developed to automatically extract crack data, including crack type and severity, rutting, potholes, 

and raveling. Cracks are generally categorized as longitudinal or transverse. The severity level of 

a crack is determined by the width of the crack and usually classified into low, medium, and high 
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severity levels. LCMS can be operated under various types of lighting conditions and on various 

pavement types (Laurent et al., 2012).  

 

 
Figure 3.12: KDOT Laser Crack Measurement System 

3.8.2 Interpretation of LCMS Data 

The LCMS-generated cracking data were interpreted and quantified following the 

AASHTO PP 67-16 (2016) and AASHTO 68-14 (2016). According to the AASHTO PP 67-16 

standard, cracking measurements were based on the five measurement zones of the pavement 

section created by the wheel paths and the areas between and outside the wheel paths. 

Three types of cracking are defined in AASHTO PP 67-16: transverse cracking, 

longitudinal cracking, and pattern cracking. Figure 3.13 shows the cross section of a survey lane 

with wheel paths and survey area between wheel paths.  

Longitudinal Crack 

According to AASHTO, a longitudinal crack is at least 12 inches long with a crack 

orientation between ± 20 degrees relative to the lane centerline. Longitudinal cracks are reported 

as the sum of longitudinal cracks across the five measurement zones. However, in this study, 

longitudinal cracks were computed considering only zone 2, zone 3, and zone 4, since these three 

zones typically reflect the impact of traffic loading (AASHTO PP 67-16).  

Pattern Crack 
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AASHTO defines pattern crack as a network of cracks that form an identifiable area or 

grouping of cracks. These crack groups are determined by interconnecting cracks with lengths less 

than 12 in. In this study, pattern cracks were also computed considering cracks in zone 2, zone 3, 

and zone 4. 

Transverse Crack 

According to AASHTO PP 67-16, a transverse crack is at least 12 inches long with a crack 

orientation between 70 and 110 degrees relative to the lane centerline. 

 

 
Figure 3.13: Cross Section of Survey Lane with Wheel Paths and Survey Area between 

Wheel Paths  
Source: AASHTO PP 67-16 

 

Cracking values are reported in linear feet, and the LCMS reported distress/IRI values 

every 0.1 mile. In this study, cracking values at every 0.1-mile segment were added for the total 

length of the project and normalized every mile. However, because there were bridges at some of 

the 0.1-mile segments, distress values of those segments were not included in the analysis. 

Longitudinal and pattern cracking were considered top-down fatigue cracking since KDOT 

recognizes all load-related cracking to be top-down cracking.  
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3.8.3 Manual Distress Data Collection Method 

KDOT used to collect pavement distresses by conducting windshield surveys in which 

three 100-foot samples were surveyed per 1-mile segment. These distresses were then extrapolated 

for a 1-mile segment and reported in the PMIS database. Only distress types predicted by the 

AASHTOWare PMED have been considered in this study. All load-related cracking was 

considered top-down. Rutting and IRI values were reported for every mile in the PMIS database. 

3.8.4 Comparison of Pavement Distresses to Trigger Values 

According to the NCHRP 1-40 B local calibration guide, the magnitudes of time-series 

distress and IRI values should be compared with the design threshold values for each distress type 

and IRI to investigate whether extracted distresses/IRI from the selected projects are typical for 

the locale (AASHTO, 2010). In addition, the average maximum measured distress values should 

exceed 50% of the design criteria. If distress/IRI values from the selected projects are significantly 

lower than the agency’s design criteria for a distress type, the accuracy and bias of the transfer 

function may not be well defined at the values that trigger major rehabilitation. Table 3.11 lists 

KDOT-specified failure criteria/trigger values for the considered pavement distress types for the 

AC overlays. 

 
Table 3.11: KDOT-specified Failure Criteria for Pavement Distresses 

Distress Type KDOT Trigger Value 
Terminal IRI (in./mile)  164 
Permanent deformation – AC only (in.) 0.25 
AC top-down fatigue cracking (ft/mile) 500 
AC total transverse cracking: thermal + reflective (ft/mile) 1200 

 

The distribution of each distress type for the selected pavement sections is shown in 

Figures 3.14–3.17. The following results were observed while analyzing measured data from the 

selected pavement sections: 

• Approximately 50% of the measured AC rut depth ranged from 0.05 to 0.1 for 

AC-over-AC and AC-over-JPCP sections. No measurements exceeded the 
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trigger value of 0.25 inches for the rehabilitated JPCP sections. Only 3% of 

the measured rut depth exceeded the trigger value for AC-over-AC sections. 

Average rut depths across all AC-over-AC and AC-over-JPCP projects were 

0.1 inches and 0.09 inches, respectively, which are close to 50% of the design 

criteria (0.125 inches) 

• Approximately 55% of the measured top-down cracking data for AC-over-AC 

sections exceeded the agency-specified trigger value of 500 ft/mile. Average 

measured top-down cracking across all the rehabilitated AC projects was 

1,180 ft/mile, and 24% of the measured longitudinal data exceeded the trigger 

value for the AC-over-JPCP sections. The average top-down cracking data 

across all AC-over-JPCP projects was 1,050 ft/mile. In addition, the standard 

deviations of measured top-down cracking across the AC-over-AC projects 

and AC-over-JPCP projects were 2,000 ft/mile and 1,850 ft/mile, respectively, 

which suggests that longitudinal cracking varies significantly from project to 

project in Kansas. 

• Approximately 85% of the measured transverse cracking was less than 200 

ft/mile for AC-over-AC sections. None of the measured transverse data 

exceeded the agency-specific trigger value of 1,200 ft/mile for AC-over-AC 

sections. On the other hand, 20% of the measured transverse cracking data 

exceeded the trigger value for the AC-over-JPCP sections. Average measured 

transverse cracking across all AC-over-AC projects and AC-over-JPCP 

projects were 103 ft/mile and 365 ft/mile, respectively. In addition, the 

standard deviation of measured transverse cracking across all AC 

rehabilitation sections was 200 ft/mile; for JPCP rehabilitation projects, the 

standard deviation was 530 ft/mile. The variation in transverse cracking was 

higher in JPCP rehabilitation sections than AC rehabilitation sections. 

• All measured IRI values were well within the agency-specific limiting value. 

The average measured IRI for both selected AC rehabilitation and JPCP 

rehabilitation sections was 57 in./mile, which is below the 50% agency-



68 

specific trigger value, suggesting that the predictive IRI model may not be 

accurate enough for projects with high IRI values. 
 

 
Figure 3.14: Rut Depth for Selected AC-Over-JPCP (Left) and AC-Over-AC (Right) 

Sections 
 

 
Figure 3.15: Top-Down Cracking in Selected AC-Over-AC (Left) and AC-Over-JPCP 

(Right) Sections 
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Figure 3.16: Transverse Cracking in AC-Over-AC (Left) and AC-Over-JPCP (Right) 

Sections 
 

 
Figure 3.17: Measured IRI in Selected AC-Over-AC (Left) and AC-Over-JPCP (Right) 

Sections 

3.8.5 Evaluation of Distress/IRI Data  

This study evaluated measured distress/IRI data to identify potential outliers. In addition, 

time-series plots for each distress type were inspected for all selected projects to ensure that the 

observed trends in distress/IRI were reasonable.  

Investigation of potential outlier 

To identify outlier and influential points, first quartile (Q1), third quartile (Q3), and 

interquartile ranges (IQRs) of each distress type were computed. The upper bound and lower bound 

were calculated following Equations 3.13 and 3.14: 
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Upper bound = Q3 + 1.5* IQR   
 Equation 3.13 
Lower bound = Q1 - 1.5 * IQR   
 Equation 3.14 

Any values outside the upper and lower bounds were considered outliers. Boxplots with 

outliers for each distress type are shown in Figures 3.18–3.21. 

 

 
Figure 3.18: Rutting Measurements for AC-Over-AC (Left) and AC-Over-JPCP (Right) 

Sections 

 

 
Figure 3.19: Top-Down Cracking Measurements for AC-Over-AC (Left) and AC-Over-JPCP 

(Right) Sections 
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Figure 3.20: Transverse Cracking Measurements for AC-Over-AC (Left) and AC-Over-

JPCP (Right) Sections 

 

 
Figure 3.21: Transverse Cracking Measurements for AC-Over-AC (Left) and AC-Over-

JPCP (Right) Sections 

 

Inspection of time-series plot 

Time-series plots of distress/IRI were visually inspected for each project to identify 

unexpected trend among measurements. Distress measurements for a project were expected to 

increase with time if no maintenance or treatment actions were performed. However, for some 

projects, distress measurements on a survey date were lower than the previous year. For instance, 

the time-series plot of transverse cracking for project KA-2836-01 (Figure 3.22) shows a reduction 

in transverse cracking in 2017 compared to the previous two years. No maintenance or treatment 

action was recorded in the KDOT PMIS database for this project in 2017. In addition, a time-series 
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plot of longitudinal cracking for project KA-1951-01 (Figure 3.23) shows an unusual pattern in 

longitudinal cracking for this project. KDOT does not keep record of in-house maintenance 

activities, and thus it is impossible to explain such an unusual trend in distress observation, even 

with LCMS measurements.  

This study normalized the distress data for a particular project and a particular year for a 

1-mile segment. For projects in which an unusual time-series pattern was observed, distress data 

for the entire project was scrutinized, and segments with unusual distress trends were discarded. 

Additionally, some observations were removed and not considered for analysis. For example, the 

transverse cracking measurement for project KA-2836-01 in 2017 was not considered when 

analyzing the transverse cracking model. Each distress type was considered individually.  

 

 
Figure 3.22: Time-Series Plot of Measured Transverse Cracking for Project KA-2836-01 
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Figure 3.23: Time-Series Plot of Measured Longitudinal Cracking for Project KA-1951-01 

 3.9 Characterizing Existing Pavement Layers 

Characterizing existing pavement structure damage is one of the primary requirements for 

rehabilitated pavement design in the AASHTOWare PMED software. The software considers 

development of distresses on AC overlay and the continuation of damage in the existing JPCP or 

AC layer (AASHTO, 2015).  

3.9.1 AC Pavement Rehabilitation 

The PMED software assumes pre-overlay damage as the starting point for future 

performance prediction with necessary adjustments for pre-overlay repairs (AASHTO, 2010). The 

PMED manual of practice (AASHTO, 2015) lists eight categories for assessing existing pavement 

condition: structural adequacy, functional adequacy, subsurface drainage accuracy, material 

durability, shoulder structural profile and condition, extent of maintenance activities performed in 

the past, variation of pavement condition, and miscellaneous constraints, such as bridge and lateral 

clearance. The manual of practice (AASHTO, 2015) also states that determination of the extent of 

damage and in-situ material properties is the most critical challenge for existing pavement 

evaluation. 
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3.9.1.1 Volumetric Properties 

AASHTOWare PMED software requires mixture volumetric properties to characterize the 

existing AC layer. Mixture volumetrics include percent air void, effective binder content, 

Poisson’s ratio, and unit weight of the HMA mix. The existing AC layer unit weight and the 

percent air void information were extracted from KDOT CMS for this study. The range of unit 

weight for the AC overlay of the selected rehabilitation projects varied from 128 lb/ft3 to 150 lb/ft3. 

Figure 3.24 shows the distribution of unit weight in the HMA mixes for all the overlay mixes. The 

Poisson’s ratio for all HMA mixtures was assumed to be 0.35. 

 

 
Figure 3.24: AC Unit Weight Distribution of Overlay AC Mixes 

 

The void filled with asphalt (VFA) and VMA of the existing layer of HMA mixes were 

available in the CMS, while the effective binder content (by volume) was computed by subtracting 

the AC target air void from the VMA. Frequency distribution of effective binder content of AC 

mixes for the selected JPCP rehabilitated sections is presented in Figure 3.25. The existing AC 

mix gradation and binder grade information were also available in the CMS database. Appendix 

B presents the layer mixture properties of the AC-over-AC sections considered for this study. 
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Figure 3.25: Effective Binder Content Distribution in Overlay HMA Mixes 

3.9.1.2 Mechanical Properties 

AASHTOWare PMED software allows three hierarchical levels of inputs to characterize 

existing AC pavement. For Level 1 rehabilitation input, the PMED software requires 

backcalculated moduli from the falling weight deflectometer (FWD) testing. The corresponding 

pavement temperature and FWD load frequency information are also required to develop damaged 

modulus master curves. The software uses undamaged and damaged AC dynamic modulus master 

curves to compute existing AC pavement damage. Ayyala et al. (2017) explained the PMED 

damage characterization process for existing pavements. At undamaged state, the AC dynamic 

modulus, |E*| is obtained using Equation 3.15. 

|𝑙𝑙𝐻𝐻𝑙𝑙𝐸𝐸∗| = 𝛿𝛿 + 𝛼𝛼
1+𝑒𝑒𝛽𝛽+𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑟𝑟

   
 Equation 3.15 

Where:  

δ, α, β, and δ = dynamic modulus master curve parameters; and 

𝑡𝑡𝑒𝑒 = reduced time, which is a function of loading time t and time temperature shift 

factor, 𝑎𝑎𝑡𝑡. 
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Figure 3.26: AC Layer Damage Computation for Level 1 Inputs  

Source: NCHRP 1-37A, 2004 

 

The PMED software computes the accumulative damage in the existing AC by reducing 

the undamaged modulus. Figure 3.26 shows the PMED software damage computation process of 

existing AC pavements (NCHRP, 2004) for Level 1 inputs, including damaged and undamaged 

master curves. The damaged master curve is obtained by vertically shifting the undamaged master 

curve downward so that the latter curve passes through the ENDT point. ENDT is the existing AC in-

situ modulus backcalculated from FWD tests. Damage in the existing AC pavement, dAC, is then 

computed using Equation 3.16. 

𝐸𝐸𝑁𝑁𝑁𝑁𝑇𝑇 = 10𝛿𝛿 + 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙−10𝛿𝛿

1+𝑒𝑒−0.3+0.5𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝐴𝐴𝐶𝐶
   

 Equation 3.16 
Where: 

Epred = Undamaged modulus; and  

ENDT = Existing AC in-situ modulus backcalculated from FWD testing. 

Pre-overlay FWD deflection data were available for 16 AC-over-AC projects of the 25 

sections selected for this study. For a few cases, however, the duration between FWD testing and 

overlay placement was more than one year, so FWD test information would not exactly represent 

pre-overlay damage of the existing pavement. However, the PMED software uses pre-overlay 
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condition data for both Level 1 and Level 2 inputs, including percent fatigue cracking, transverse 

cracking, and layer-wise permanent deformation information. In this study, the latest pavement 

condition data available for each AC rehabilitation project were less than one year old from the 

time of overlay construction. Table 3.12 lists the available FWD testing information for the AC-

over-AC projects. The LTPP seven sensors configuration was for FWD testing for each of these 

projects.  

 
Table 3.12: FWD Testing Data for the AC-Over-AC Section 

Project Route County FWD test date Overlay construction date 
KA-4013-01 US-24 Osborne October 2013 May 2015 
KA-1436-01 US-36 Cheyenne July 2003 August 2009 
KA-0813-01 US-36 Washington June 2003 December 2007 
KA-0811-01 US-75 Montgomery July 2002 August 2007 
KA-0310-01 US-75 Osage July 2003 September 2006 
KA-4192-01 US-77 Butler September 2015 December 2015 
KA-2941-01 US-77 Butler June 2012 August 2013 
KA-1480-01 US-160 Clark July 2005 May 2009 
KA-1460-01 US-166 Cowley October 2008 December 2009 
KA-2200-01 US-169 Allen July 2013 January 2015 
KA-2204-01 US-169 Anderson August 2011 January 2015 
KA-1444-01(1) US-183 Phillips August 2005 September 2009 
KA-1444-01(2) US-183 Phillips August 2005 September 2009 
KA-3674-01 US-283 Norton June 2014 May 2015 
K-9364-01 K-92 Jefferson June 2001 April 2004 
KA-3496-01 K-254 Sedgwick November 2003 November 2004 

 

The AASHTOWare PMED software requires backcalculated AC moduli of existing 

pavement and corresponding pavement temperature and loading frequency at the time of FWD 

testing (Bech, 2018). KDOT operates one Dynatest 8000 and one Jils FWD. The typical load pulse 

duration of a Dynatest FWD is 15-35 milliseconds, and the resulting load frequency is 29–67 Hz 

(Ayyala et al., 2017). Gedafa et al. (2010) previously studied existing AC pavement stiffness from 

FWD testing and laboratory dynamic modulus testing collected from field cores. They assumed a 
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loading frequency of 25 Hz to compare the backcalculated modulus with the laboratory-tested 

dynamic modulus. Rao and Von Quintus (2015) recommended using a FWD loading frequency of 

30 Hz for PMED software input.  

This study used EVERCALC version 5.0 software to backcalculate the existing AC 

pavement moduli for the projects listed in Table 3.12. Backcalculation results were obtained for 

each FWD drop at a 9,000-lb (9-kip) load level. Any resulting backcalculated modulus yielding a 

root mean square error more than 5% was eliminated from the analysis. Figure 3.27 shows the 

backcalculated moduli for the pavement section KA-1436-01, and Appendix C presents the 

backcalculated moduli for pavement sections listed in Table 3.12. The pavement temperature at 

the time of the FWD testing was 126–133 °F.  

 

 
Figure 3.27: Backcalculated Moduli for Pavement Section KA-1436-01 

 

Figure 3.27 shows that the backcalculated AC moduli varied significantly along the length 

of pavement section KA-1436-01. Variation in backcalculated moduli along the pavement section 

was observed for other projects as well. These backcalculated AC moduli were then evaluated to 

identify potential outliers. First quartile (Q1), third quartile (Q3), and interquartile range (IQR) 

values were computed, and boxplots were drawn to identify outlier and influential points. The 

boxplot for backcalculated AC moduli of the KA-1436-01 section is shown in Figure 3.28. The 
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figure shows two distinct outliers that were removed from the analysis of damage characterization 

of existing AC layers of section KA-1436-01. The same inspection procedure was followed for 

backcalculated AC moduli for every project listed in Table 3.12. 

 

 
Figure 3.28: Boxplot of Backcalculated AC Moduli for Pavement Section KA-1436-01 

 

Backcalculated moduli are not required for Level 2 AC rehabilitation input. PMED 

software predicts damage from existing pavement fatigue cracking quantity and severity using an 

empirical transfer function presented in Equation 3.17 (NCHRP, 2004). 

𝑆𝑆𝑅𝑅 =  � 1
60
� 𝐶𝐶4

1+𝑒𝑒𝑐𝑐1𝑐𝑐1
/+𝑐𝑐2𝑐𝑐2

/ 𝑙𝑙𝑙𝑙𝑙𝑙�𝑑𝑑𝐴𝐴𝐶𝐶∗100�
  

 Equation 3.17 
Where C1, C2, and C4 are transfer function coefficients. For the globally 

calibrated AASHTOWare PMED model, C1 = 1, C2 = 1 and, C4 = 6.0. 

The C1' and C2' parameters are computed from Equation 3.18 and Equation 3.19. 

C1' = -2 * C2'    
 Equation 3.18 
𝑐𝑐2

/ = −2.40874 − 39.748(1 + 𝐻𝐻𝐴𝐴𝑅𝑅)−2.856    
 Equation 3.19 

Where HAC is the total thickness of the AC layer.  
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FWD testing information was not available for nine projects of the 25 AC-over-AC 

sections considered in this study, so Level 2 inputs were used for those projects.  

3.9.1.3 Pre-overlay Condition Data  

For both Level 1 and Level 2 AC rehabilitation inputs, PMED software requires pre-

overlay condition data. For Level 1 inputs, severity of fatigue cracking, severity and quantity of 

transverse cracking, and layer-wise rutting information are required. For Level 2 inputs, both 

severity and quantity of the percent fatigue cracking information are required. This study 

considered all load-related fatigue cracking to be top-down and expressed in ft/mile because of the 

predominant construction of thick, full-depth HMA pavements throughout Kansas and because the 

KDOT PMIS database does not differentiate between bottom-up or top-down cracks. For Level 2 

AC rehabilitation inputs, however, total longitudinal cracking values were multiplied by a lane 

width of 12 ft and subsequently converted to a percentage value.  

Figures 3.29–3.32 present pre-overlay condition data for AC-over-AC sections considered 

for this study. The pre-overlay top-down cracking and transverse cracking varied significantly for 

the sections, potentially due to the change of pavement condition data collection system in 2013 

when KDOT began collecting automated pavement distress data on the entire road network using 

LCMS. Until 2013, KDOT conducted manual surveys to collect distress data. Additionally, an 

overlay rehabilitation decision triggered by ride comfort and no fatigue cracking can contribute to 

variation in the pre-overlay cracking pattern. 
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Figure 3.29: Pre-overlay Top-Down Fatigue Cracking in the AC-Over-AC Sections 

 

 
Figure 3.30: Pre-overlay Transverse Cracking in the AC-Over-AC Sections 
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Figure 3.31: Pre-overlay Permanent Deformation in the AC-Over-AC Sections 

 

 
Figure 3.32: Pre-overlay IRI in the AC-Over-AC Sections 

3.9.2 JPCP Rehabilitation 

For JPCP rehabilitated sections, damage is computed from the total percent of slabs with 

transverse cracking and the percentage of replaced slabs (NCHRP, 2004). In addition, transverse 

joint load transfer efficiency (LTE) value is required to assess reflection cracking potential for 

JPCP sections with AC overlay.  
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KDOT does not collect transverse cracking data for JPCP sections since this slab cracking 

is not prevalent on its concrete pavement network. Thus, project-specific percent slab cracking 

data was not available. Furthermore, percent slab replacement information also was not available. 

In this study, 3% slab cracking was assumed to be the trigger value for rehabilitation of JPCP 

sections in Kansas. KDOT does not conduct FWD testing on concrete pavements prior to overlay, 

so site-specific LTE values were not available. However, project-specific joint faulting data were 

available. LTE is one of the contributory factors to transverse joint faulting in concrete pavements 

(Khazanovich & Gotlif, 2003). This study followed a KDOT-provided guideline to determine LTE 

values for the selected rehabilitated JPCP projects. This guideline is based on the assumptions that 

JPCP sections with high faulting values would have poor LTE values and JPCP sections with low 

faulting values would have good LTE values. Table 3.13 lists the guidelines for estimating LTE, 

and Figure 3.33 shows the mean joint faulting of the selected JPCP rehabilitated projects prior to 

overlay. 

 
Table 3.13: KDOT Guidelines for Estimating LTE 

Functional class of the roadway Faulting criteria (in.) Recommended LTE (%) 

Interstate 

< 0.1 in. 80% 

0.1–0.15 in. 65% 

> 0.15 in. 50% 

Principal arterials 

< 0.125 in. 80% 

0.125–0.20 in. 65% 

> 0.20 in. 50% 

Local roads 

< 0.15 in. 80% 

0.15–0.30 in. 65% 

> 0.30 in. 50% 
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Figure 3.33: Transverse Joint Faulting of the JPCP Rehabilitated Project Prior to Overlay 
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Chapter 4: Local Calibration and Validation 

The calibration procedure included assessing the bias with nationally calibrated 

coefficients, calibrating the performance models, and validating the performance models. Two 

types of models are embedded in the PMED software: structural response model and transfer 

functions. Calibration of the structural response models involves detailed laboratory testing, while 

later models empirically relate the structural models to pavement distresses. This study calibrated 

transfer functions of the performance models to Kansas conditions. This chapter describes local 

calibration of PMED performance models for AC-over-AC and AC-over-JPCP sections. 

 4.1 Local Calibration and Validation of AC-Over-AC Sections 

During local calibration, null hypothesis for the sampling template was evaluated to 

determine the bias between measured and predicted distresses. Paired t-test was conducted to 

determine initial bias between the actual distresses and AASHTOWare-predicted results with 

globally calibrated coefficients at 95% confidence level. In addition, the ratio of standard error of 

estimate (Se) and standard deviation of the measured data (Sy) was calculated for each distress 

model calibration to understand variability in the predicted performance and measured 

performance. Se/Sy ratio greater than one indicated that variability in residual error between 

predicted and measured performances was larger than variability in the measured data; Se/Sy ratio 

less than one indicated that variability in residual error was smaller than in the measured data. The 

second scenario is preferred for each distress model calibration (Kim et al., 2011).  

4.1.1 AC Rutting Model Calibration for AC-Over-AC Sections  

The AASHTOWare PMED software computes rutting on overlay and in existing AC 

layers. Computed rutting in existing layers accumulate at a decreased rate during the overlay period 

due to the hardening effect of traffic prior to overlay (NCHRP, 2004). Permanent deformation in 

each layer of existing pavement at the time of overlay is used to predict future rutting in existing 

layers (AASHTO, 2015). A prior study calibrated the PMED rutting model for new flexible 

pavements in Kansas (Islam, Hossain, Jones, Bose et al., 2019). The current study calibrated the 

total pavement rutting model for AC-over-AC sections.  
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4.1.1.1 Bias Assessment of the AC Rutting Model 

Bias between measured and predicted rutting was computed to verify the total pavement 

permanent deformation model in PMED for AC rehabilitation sections. The globally calibrated 

rutting model showed significant bias in the paired t-test, and the null hypothesis was rejected at 

95% confidence interval. The p-value from the paired t-test was less than 0.05, indicating that 

predicted and measured rutting differ. Measured versus predicted total rutting for globally 

calibrated coefficients are shown in Figure 4.1, and summary statistics of the fit are shown in 

Table 4.1. 

 

 
Figure 4.1: Predicted vs. Measured AC Rutting with Globally Calibrated Factors 

 
Table 4.1: Statistical Analysis Summary Results for Nationally Calibrated Factors 
Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

1.29 0.33 0.055 1.36 <0.001 Rejected 

4.1.1.2 Elimination of Bias of the Rutting Model 

Equation 2.1 shows that rutting model calibration parameters 𝛽𝛽1r can be optimized outside 

of the AASHTOWare software to reduce bias and standard error. The generalized reduced gradient 

(GRG) nonlinear optimization technique was applied using Microsoft Excel Solver to optimize 
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𝛽𝛽1r. In addition, a paired t-test was conducted between measured and predicted data. The p-value 

from the paired t-test was higher than 0.05, indicating that predicted rutting and measured rutting 

differ. Results of the statistical analysis after local calibration are presented in Table 4.2. 

 
Table 4.2: Statistical Analysis Results for Locally Calibrated Factors for the AC Rutting 

Model 
Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

0.59 0.29 0.053 1.31 0.28 Failed to reject 

 

A comparison of Table 4.1 and Table 4.2 showed minimal improvement of goodness-of-

fit statistics after optimizing the 𝛽𝛽1r  parameter. The NCHRP 1-40B local calibration guide 

recommends adjusting coefficients 𝛽𝛽2r  and 𝛽𝛽3r  to further reduce Se of the AC permanent 

deformation model. Coefficients 𝛽𝛽2r and 𝛽𝛽3r are power function parameters for temperature effect 

and number of loading cycles, respectively, for computing accumulated AC permanent 

deformation. Therefore, coefficients 𝛽𝛽2r  and 𝛽𝛽3r  cannot be optimized outside of the 

AASHTOWare PMED software. The PMED software must run numerous times considering a 

large factorial of 𝛽𝛽2r and 𝛽𝛽3r coefficients to yield a combination that produces the least Se. The 

local calibration guide recommends that Se be within 0.1 inches for the AC rutting model. 

Measured versus predicted total rutting with locally calibrated coefficients is shown in Figure 4.2.  
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Figure 4.2: Predicted vs. Measured AC Rutting with Locally Calibrated Factors 

Statistical analysis results for the rutting model and the validation dataset are shown in 

Table 4.3. Goodness-of-fit statistics showed minimal variation for the validation dataset with 

locally adjusted coefficients. 

 
Table 4.3: Summary Statistics for the Validation Set of the AC Rutting Model with Local 

Factors 
Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

0.2 0.19 0.08 1.31 0.65 Failed to reject 

4.1.2 Transverse Cracking Model Calibration for AC-Over-AC Sections 

For AC-over-AC sections, transverse cracking is generated as the sum of AC thermal 

cracking and reflection cracking. Calibration of the total transverse cracking model with the newly 

developed reflection cracking model was described at a webinar organized by the Transportation 

Research Board standing committee on pavement rehabilitation (Von Quintus, 2016). Since 

reflection cracking could not be distinguished from thermal cracking for AC overlay during a 

distress survey of the LTPP sections, AC overlays and new AC pavements had the same thermal 

cracking transfer function coefficient. The transverse cracking model was calibrated by adjusting 

the reflection cracking model calibration coefficients.  
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Section 3.8.5 describes how KDOT collects full lane-width transverse cracking data for 

AC pavements but does not distinguish between thermal and reflection cracks. Furthermore, AC 

thermal cracking model coefficients were not adjusted in the previous PMED calibration study for 

new/reconstructed AC/HMA pavements for Kansas (Islam, Hossain, Jones, Bose et al., 2019). For 

that study, automated distress survey data were not available, and the manual distress survey 

yielded no thermal cracking for 13 of the 27 new AC pavement projects. In addition, no material-

specific Level 1 input data in terms of creep compliance and indirect tensile strength were available 

for calibrating the AC thermal cracking model, and the PMED software did not predict any thermal 

cracking for any projects selected for new AC pavement calibration.  

A zone-wise AC thermal cracking model was recommended for calibration for new HMA 

pavement sections with prevalent thermal cracking. In this study, however, the selected AC-over-

AC projects exhibited significant transverse cracking and the PMED transverse cracking model 

needed to be calibrated. Therefore, the transverse cracking model was calibrated by adjusting the 

reflection cracking model coefficients only. Global factors were used for the AC thermal cracking 

model. However, AASHTOWare PMED software did not predict any AC thermal cracking for the 

selected JPCP rehabilitated sections with nationally calibrated coefficients; thus, all transverse 

cracking may be regarded as reflection cracking. The traditional split sampling method was 

implemented to calibrate the total transverse cracking model. An 80-20 split of the dataset was 

considered for calibration and validation. 

4.1.2.1 Bias Assessment of Transverse Cracking Model 

Bias between measured and predicted data was computed to verify the PMED total 

transverse cracking model for AC-over-AC sections. The globally calibrated transverse cracking 

model showed significant bias in the paired t-test, and the null hypothesis was rejected at 95% 

confidence interval. The p-value from the paired t-test was less than 0.05, indicating that predicted 

and measured transverse cracking differ. Measured versus predicted total transverse cracking with 

globally calibrated coefficients is shown in Figure 4.3, and summary statistics are shown in Table 

4.4. The measured versus predicted transverse cracking plot in the figure shows an unsymmetrical 

trend to the line of equality. 
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Figure 4.3: Predicted vs. Measured Transverse Cracking with Globally Calibrated Factors 

 
Table 4.4: Statistical Analysis Summary Results for Nationally Calibrated Factors 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

6712 4,525,304 195 0.96 0.0013 Rejected 

4.1.2.2 Elimination of Bias of the Transverse Cracking Model 

Equations 2.8–2.13 show that calibration parameters C4 and C5 of the transverse cracking 

model can be optimized outside of the AASHTOWare software using Microsoft Excel if damage 

ratio (D) and percent reflective cracking rate (RCR) values are available. PMED software 

generates a text file “transverseReflectiveCracking.log,” that contains time-series results from 

Equations 2.8–2.13. In this study, time-series D and RCR values were extracted for selected AC-

over-JPCP projects, and the total transverse cracking model calibration coefficients were 

computed outside the AASHTOWare software. GRG nonlinear optimization technique was 

applied to determine a combination of C4 and C5 parameters that yielded the least SSE between 

measured and predicted total transverse cracking. 
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Adjusted C4 and C5 coefficients were used as locally calibrated coefficients in the total 

transverse cracking model of the AASHTOWare PMED software, and a paired t-test was 

conducted between the measured and predicted data. Summary statistics of the transverse cracking 

model after local calibration are shown in Table 4.5, indicating that the bias significantly 

decreased after local calibration. The Se of the calibrated model decreased to 112 ft/mile, which is 

within the AASHTO-suggested Se range of transverse cracking model (250 ft/mile). The p-value 

from the paired t-test was higher than 0.05, which suggests that no evidence is present to conclude 

the predicted and measured transverse cracking differ. 

 
Table 4.5: Summary Statistics for Locally Calibrated Total Transverse Cracking Model 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

1,244 1,279,336 109 0.53 0.27 Failed to reject 

 

Measured versus predicted transverse cracking with locally calibrated coefficients is shown 

in Figure 4.4. A significant improvement in data location with respect to the line of equality was 

noticed after local calibration. 

 

 
Figure 4.4: Predicted vs. Measured Transverse Cracking with Locally Calibrated Factors 
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Statistical analysis results for the total transverse cracking model with the validation dataset 

are shown in Table 4.6. Goodness-of-fit statistics results showed increased bias and Se for the 

validation dataset compared to the calibration dataset.  

 
Table 4.6: Summary Statistics for the Validation Set of the Transverse Cracking Model 

with Local Factors 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

895 703,562 147 0.88 0.29 Failed to reject 

4.1.3 Load-Related Cracking Model Calibration for AC-Over-AC Sections 

AASHTOWare PMED software predicts two types of load-related cracking: bottom-up 

and top-down fatigue cracking. Bottom-up fatigue cracks, or alligator cracks, initiate at the bottom 

of the HMA layers and propagate to the surface (NCHRP, 2004). Bottom-up fatigue cracks, which 

are caused by tensile strain at the bottom of the HMA layers, propagate at the surface as multiple, 

short, longitudinal, or transverse cracks in the wheel path and become interconnected with 

continued loading (Kim et al., 2011). Top-down fatigue cracks are load-related longitudinal cracks 

in the wheel paths (Haider et al., 2014) that initiate at the pavement surface and propagate 

downwards with continued traffic loading (NCHRP, 2004). Three primary reasons account for 

longitudinal cracking. The first reason is development of tension, torsion, and shear stresses at the 

pavement surface due to truck traffic loading. The second reason for longitudinal cracking is the 

development of tensile stress at the pavement surface due to daily and seasonal temperature 

variation, and the third reason is longitudinal crack growth due to aging (Kim et al., 2011).  

The NCHRP 1-40B project recommended extracting 6-in. diameter cores on top of load- 

related cracks to determine crack origin. However, KDOT considers all load-related cracking to 

be top-down due to the prevalence of thick HMA pavements throughout the state. KDOT assumes 

that use of full-depth thick HMA pavements or overlay on top of thick HMA pavements keeps 

tensile strain at the bottom of the AC layer below the fatigue endurance limit, thereby restricting 

the growth of bottom-up fatigue cracking. This study assumed that all load-related cracks initiate 

at the pavement surface. 
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4.1.3.1 Bias Assessment of the Top-Down Cracking Model 

Bias between measured and predicted data was computed to verify the PMED top-down 

cracking model for AC overlays on AC sections. The globally calibrated total top-down cracking 

model showed significant bias in the paired t-test, and the null hypothesis was rejected at 95% 

confidence interval. The p-value from the paired t-test was less than 0.05, indicating that predicted 

rutting and measured top-down cracking differ. Summary statistics are shown in Table 4.7. 

 
Table 4.7: Summary Statistics for the Top-Down Cracking Model with Nationally 

Calibrated Factors 
Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

95069 803,584,612 2594 1.34 <0.001 Rejected 

 

Measured versus predicted top-down cracking with globally calibrated coefficients is 

shown in Figure 4.5. The measured versus predicted top-down cracking plot shows an 

unsymmetrical trend to the line of equality. 

 

 
Figure 4.5: Predicted vs. Measured Longitudinal Cracking with Globally Calibrated 

Factors 
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4.1.3.2 Elimination of Bias of the Top-Down Cracking Model 

Equation 2.5 shows that the calibration parameters C1 and C2 of the top-down cracking 

model can be optimized outside of the AASHTOWare software if the time-series cumulative 

damage index at the top of the surface (DItop) values are available. These values were extracted 

for the selected AC-over-AC projects from the Excel output, and top-down cracking values were 

computed outside the AASHTOWare software using the GRG nonlinear optimization technique. 

This approach was taken to determine a combination of C1 and C2 parameters that yielded the 

least SSE between measured and predicted top-down cracking. 

Adjusted C1 and C2 coefficients were used as locally calibrated coefficients in the top-

down cracking model of the AASHTOWare PMED software, and a paired t-test was conducted 

between measured and predicted data. Results of the paired t-test after local calibration are shown 

in Table 4.8, which confirms that the bias decreased significantly after local calibration: the Se of 

the calibrated model decreased to 1,900 ft/mile from 2,594 ft/mile. However, the local calibration 

guide (AASHTO, 2010) recommends that the Se of the longitudinal cracking model should be 

within 600 ft/mile. The p-value from the paired t-test was higher than 0.05, which suggests no 

evidence that predicted rutting and measured top-down cracking differ. 

 
Table 4.8: Summary Statistics for the Top-Down Cracking Model with Locally Calibrated 

Factors 

Bias SSE Se Se/Sy
 p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

18626 389,144,470 1900 0.98 0.34 Failed to reject 

 

Measured versus predicted top-down cracking with local coefficients is shown in Figure 

4.6. No significant improvement was noticed in data location with respect to the line of equality 

after local calibration. 
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Figure 4.6: Predicted vs. Measured Longitudinal Cracking with Locally Calibrated Factors 

 

Statistical analysis results for the top-down cracking model after validation are shown in 

Table 4.9. Goodness-of-fit statistics results showed high bias and Se for the validation dataset. 

 
Table 4.9: Summary Statistics for the Validation Set of the Top-Down Cracking Model 

with Local Factors 

Bias SSE Se Se/Sy
 p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

7169 159,792,367 2259 0.86 0.58 Failed to reject 

4.1.4 IRI Model Calibration for AC-Over-AC Sections 

IRI is a measurement of the functional adequacy of pavement smoothness (Haas & Hudson, 

2015). PMED software predicts IRI empirically as a function of the initial IRI at the time of 

construction and pavement distresses (i.e., fatigue cracking, transverse cracking, permanent 

deformation, and site factors representing subgrade soil shrink/swell and frost-heave potential). 
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4.1.4.1 Bias Assessment of the IRI Model 

Bias between measured and predicted IRI was computed to verify the nationally calibrated 

model for AC rehabilitated sections. The globally calibrated model showed significant bias in the 

paired t-test, and the null hypothesis was rejected at 95% confidence interval. The p-value from 

the paired t-test was less than 0.05, indicating that predicted rutting and measured IRI differ. 

Summary statistics are shown in Table 4.10 and measured versus predicted total IRI for globally 

calibrated coefficients is shown in Figure 4.7. The measured versus predicted IRI plot shows an 

unsymmetrical trend to the line of equality. 

 
Table 4.10: Statistical Analysis Summary Results for Nationally Calibrated Factors 
Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

1436 38,580 14 0.98 <0.001 Rejected 

 

 
Figure 4.7: Predicted vs. Measured AC IRI with Globally Calibrated Factors 

4.1.4.2 Elimination of Bias of the IRI Model 

Equation 2.15 shows that IRI model calibration parameters C1, C2, C3, and C4 can be 

optimized outside of the AASHTOWare PMED environment using Microsoft Excel if the initial 
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IRI, pavement distresses, and site factor information are available for each project at the 

corresponding dates of measured IRI. In addition, site-wise annual rainfall, freezing index, soil 

plasticity index, and subgrade soil percent passing through a US No. 4 sieve and US No. 200 sieve 

are required to calculate site-factor information. This study extracted the required input parameters 

from PMED output files, and the IRI model was calibrated outside the AASHTOWare PMED 

environment. A paired t-test was then conducted between measured and predicted IRI with local 

coefficients. The p-value from the paired t-test was higher than 0.05, which suggests no evidence 

that predicted and measured IRI differ. Results of the statistical analysis after local calibration are 

presented in Table 4.11.  

 
Table 4.11: Statistical Analysis Results for Locally Calibrated Factors for the AC Rutting 

Model 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

66 27,528 16 1.16 0.69 Failed to reject 

 

Measured versus predicted IRI with locally calibrated coefficients are shown in Figure 4.8. 

A significant improvement in data location with respect to the line of equality was observed after 

local calibration. 
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Figure 4.8: Predicted vs. Measured AC IRI with Locally Calibrated Factors 

Statistical analysis results for the rutting model with the validation dataset are shown in 

Table 4.12. The p-value from the paired t-test was less than 0.05, indicating that predicted and 

measured IRI differ for the validation dataset. 

 
Table 4.12: Summary Statistics for the Validation Set of the AC Rutting Model with Local 

Factors 

Bias SSE Se Se/Sy p-value Hypothesis, H0: ∑(Meas.-Pred.) = 0 

380 11,830 15 1.16 <0.001 Rejected 

 4.2 Local Calibration and Validation of AC-Over-JPCP Sections 

This study calibrated PMED transfer function parameters for AC-over-JPCP sections. The 

rutting model, transverse cracking, top-down cracking, and IRI models were also calibrated.  

4.2.1 AC Rutting Model Calibration for AC-Over-JPCP Sections 

For AC-over-JPCP sections, rutting occurs in the overlay on top of the PCC layer. At the 

first step, traditional split sampling method was used to calibrate the AC rutting model. An 80-20 

split of the dataset was considered for calibration and validation. 
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4.2.1.1 Bias Assessment of the AC Rutting Model 

Bias between measured and predicted rutting was computed to verify the PMED AC rutting 

model for AC-over-JPCP sections. The globally calibrated rutting model showed significant bias 

in the paired t-test for the AC rutting model, and the null hypothesis was rejected at 95% 

confidence interval. The p-value from the paired t-test was less than 0.05, indicating that predicted 

rutting and measured rutting differ. Summary statistics are shown in Table 4.13. 

 
Table 4.13: Statistical Analysis Summary Results for Nationally Calibrated Factors 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

2.73 0.24 0.042 0.9 <0.0001 Rejected 

 

Measured versus predicted total rutting for globally calibrated coefficients is shown in 

Figure 4.9. The measured versus predicted rutting plot shows an unsymmetrical trend to the line 

of equality. 

 

 
Figure 4.9: Predicted vs. Measured AC Rutting with Globally Calibrated Factors 
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4.2.1.2 Elimination of Bias of the AC Rutting Model 

Equation 2.1 shows that calibration parameters 𝛽𝛽1r  can be optimized outside of the 

AASHTOWare software to reduce bias and standard error. The GRG nonlinear optimization 

technique was applied using Microsoft Excel Solver to optimize 𝛽𝛽1r , and a paired t-test was 

conducted between the measured and predicted data. Results of the paired t-test after local 

calibration are shown in Table 4.14, which confirm a significantly reduced bias.  

 
Table 4.14: Statistical Analysis Results for Locally Calibrated Factors for the AC Rutting 

Model 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

0.68 0.17 0.046 0.98 0.08 Failed to reject 

 

A comparison of Table 4.13 and Table 4.14 show that Se slightly increased after reducing 

bias between measured and predicted rutting. The NCHRP 1-40B local calibration guide 

recommends adjusting coefficients 𝛽𝛽2r and 𝛽𝛽3r to reduce Se of the AC permanent deformation 

model. Coefficients 𝛽𝛽2r and 𝛽𝛽3r are power function parameters for temperature effect and number 

loading cycles, respectively, for computing accumulated AC permanent deformation. Therefore, 

coefficients 𝛽𝛽2r  and 𝛽𝛽3r  cannot be optimized outside of the AASHTOWare PMED software. 

PMED software must run numerous times considering a large factorial of 𝛽𝛽2r and 𝛽𝛽3r coefficients 

to yield a combination that produces the least Se. However, the local calibration guide recommends 

the Se be within 0.1 inches for the AC rutting model.  

Measured versus predicted total rutting with locally calibrated coefficients is shown in 

Figure 4.10. A significant improvement in data location with respect to the line of equality was 

noticed after local calibration. 
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Figure 4.10: Predicted vs. Measured AC Rutting with Locally Calibrated Factors 

 

Statistical analysis results for the rutting model with the validation dataset are shown in 

Table 4.15. Goodness-of-fit statistics did not vary significantly for the validation dataset with 

locally adjusted coefficients. 

 

 
Table 4.15: Summary Statistics for the Validation Set of the AC Rutting Model with Local 

Factors 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

0.44 0.05 0.045 1.09 0.06 Failed to reject 

4.2.2 Transverse Cracking Model Calibration for AC-Over-JPCP Sections 

PMED software computes transverse cracking as the sum of AC thermal cracking and 

reflection cracking for AC-over-JPCP sections. In this study, reflection cracking and thermal 

cracking measured data could not be distinguished. AC thermal cracking model coefficients were 

not adjusted in the previous PMED calibration study for new/reconstructed HMA pavements for 

Kansas, so thermal cracking model coefficients and the national default stayed the same, and the 

transverse cracking model was calibrated by adjusting the reflection cracking model coefficients 

only. The PMED software did not predict any thermal cracking for any JPCP rehabilitated sections 
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considered for this study. The traditional split sampling method was implemented to calibrate the 

transverse cracking model. An 80-20 split of the dataset was considered for calibration and 

validation. 

4.2.2.1 Bias Assessment of the Transverse Cracking Model 

Bias between measured and predicted data was computed to verify the PMED transverse 

cracking model for AC-over-JPCP sections. The globally calibrated transverse cracking model 

showed significant bias in the paired t-test, and the null hypothesis was rejected at 95% confidence 

interval. The p-value from the paired t-test was less than 0.05, indicating that predicted and 

measured transverse cracking differ. Summary statistics are shown in Table 4.16. 

 
Table 4.16: Statistical Analysis Summary Results for Nationally Calibrated Factors 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

5459 18,574,025 594 1.26 <0.0001 Rejected 

 

Measured versus predicted total transverse cracking with globally calibrated coefficients is 

shown in Figure 4.11. The measured versus predicted transverse cracking plot shows an 

unsymmetrical trend to the line of equality. 

 

 
Figure 4.11: Predicted vs. Measured Transverse Cracking with Globally Calibrated 

Factors 
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4.2.2.2 Elimination of Bias of the Transverse Cracking Model 

This study calibrated the transverse cracking model outside the PMED software 

environment using Microsoft Excel. The time-series D and RCR values were extracted for the 

selected AC-over-JPCP projects, and the C4 and C5 parameters were optimized. Adjusted C4 and 

C5 coefficients were then used as locally calibrated coefficients in the total transverse cracking 

model of the AASHTOWare PMED software, and a paired t-test was conducted between the 

measured and predicted data. Results of the paired t-test after local calibration are shown in Table 

4.17, which confirm that the model goodness-of-fit statistics improved slightly after local 

calibration. The Se of the calibrated model decreased to 570 ft/mile from 594 ft/mile; however, the 

local calibration guide (AASHTO, 2010) recommends that the Se of the transverse cracking model 

be within 250 ft/mile.  

 
Table 4.17: Summary Statistics for Locally Calibrated Total Transverse Cracking Model 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

5188 17,072,580 570 1.20 0.21 Failed to reject 

 

Measured versus predicted total transverse cracking with locally calibrated coefficients is 

shown in Figure 4.12. Minimal improvement was observed in data location relative to the line of 

equality after local calibration. 
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Figure 4.12: Predicted vs. Measured Transverse Cracking with Locally Calibrated Factors 

 

Statistical analysis results for the total transverse cracking model with the validation set 

are shown in Table 4.18. Goodness-of-fit statistics results showed high bias and Se for the 

validation dataset. 

 
Table 4.18: Summary Statistics for the Validation Set of the Transverse Cracking Model 

with Local Factors 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

5859 17,238,328 946 1.33 0.16 Failed to reject 

4.2.3 Load-Related Cracking Model Calibration for AC-Over-JPCP Sections 

KDOT considers all load-related cracking to be top-down because HMA overlays on top 

of thick PCC sections keep tensile strain at the bottom of the asphalt layer below the fatigue 

endurance limit, thereby restricting the growth of bottom-up fatigue cracking. Therefore, this study 

assumed that all load-related cracks originate at the surface of the AC overlay. 

4.2.3.1 Bias Assessment of the Top-Down Cracking Model 

Bias between measured and predicted data was computed to verify the PMED top-down 

cracking model for AC overlays on JPCP sections. The globally calibrated total top-down cracking 
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model showed significant bias, and the null hypothesis was rejected at 95% confidence interval. 

The p-value from the paired t-test was less than 0.05, indicating that the predicted and measured 

top-down cracking differ. Summary statistics are shown in Table 4.19. 

 
Table 4.19: Summary Statistics for the Top-Down Cracking Model with Nationally 

Calibrated Factors 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

87502 58,388,750 814 1.0 <0.001 Rejected 

 

Measured versus predicted top-down cracking with globally calibrated coefficients is 

shown in Figure 4.13. The measured versus predicted top-down cracking plot shows an 

unsymmetrical trend to the line of equality. 

 

 
Figure 4.13: Predicted vs. Measured Longitudinal Cracking with Globally Calibrated 

Factors 

4.2.3.2 Elimination of Bias of the Top-Down Cracking Model 

This study calibrated the top-down cracking model outside the PMED software 

environment. Time-series cumulative damage index (DItop, at the top of the surface) values were 

extracted for the selected AC-over-JPCP projects, and the C1 and C2 parameters were optimized 
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using Microsoft Excel. Adjusted C1 and C2 coefficients were then used as locally calibrated 

coefficients in the top-down cracking model of the AASHTOWare PMED software, and a paired 

t-test was conducted between measured and predicted data. Summary statistics after local 

calibration are shown in Table 4.20. The p-value from the paired t-test was higher than 0.05, which 

suggests that there is no evidence that predicted rutting and measured top-down cracking differ. 

Although the bias and SSE decreased slightly after local calibration, the Se increased after 

optimizing the C1 and C2 coefficients of the transfer function. 

 
Table 4.20: Summary Statistics for the Top-Down Cracking Model with Locally Calibrated 

Factors 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

11220 45,029,936 840 1.0 0.09 Failed to reject 

 

Measured versus predicted top-down cracking with globally calibrated coefficients is 

shown in Figure 4.14. Minimal improvement was observed in data location relative to the line of 

equality after local calibration. 

 

 
Figure 4.14: Predicted vs. Measured Longitudinal Cracking with Locally Calibrated 

Factors 
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Statistical analysis results for the top-down cracking model with the validation set are 

shown in Table 4.21. Goodness-of-fit statistics results showed high bias and Se for the validation 

dataset.  

 
Table 4.21: Summary Statistics for the Validation Set of the Top-Down Cracking Model 

with Local Factors 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

7479 16,844,936 873 0.87 0.08 Failed to reject 

4.2.4 IRI Model Calibration for AC-Over-JPCP Sections 

PMED software for the AC-over-JPCP sections predicts IRI empirically and considers IRI 

at the time of construction. Pavement distresses (i.e., fatigue cracking, transverse cracking, 

permanent deformation), and site factors such as subgrade soil shrink/swell and frost-heave 

potential are used also in a regression equation. 

4.2.4.1 Bias Assessment of the IRI Model 

Bias between measured and predicted IRI was computed to verify the nationally calibrated 

model for JPCP rehabilitated sections. Summary statistics are shown in Table 4.22. The globally 

calibrated model showed significant bias in the paired t-test, and the null hypothesis was rejected 

at 95% confidence interval. The p-value from the paired t-test was less than 0.05, indicating that 

predicted rutting and measured IRI differ for AC-over-JPCP sections. 

 
Table 4.22: Statistical Analysis Summary Results for Nationally Calibrated Factors 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

1,364 33,445 10 0.89 <0.001 Rejected 

 

Measured versus predicted total IRI for globally calibrated coefficients is shown in Figure 

4.15. The measured versus predicted IRI plot shows an unsymmetrical trend to the line of equality. 
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Figure 4.15: Predicted vs. Measured IRI with Globally Calibrated Factors  

4.2.4.2 Elimination of Bias of the IRI Model 

IRI model calibration parameters C1, C2, C3, and C4 for AC-over-JPCP sections were 

optimized outside of the AASHTOWare PMED environment using Microsoft Excel. Project-wise 

soil plasticity index and subgrade soil percent passing through a US No. 4 sieve and US No. 200 

sieve were extracted from PMED software output for each project. In addition, project-specific rut 

depth, fatigue cracking, and transverse cracking values were extracted for the corresponding IRI 

data collection date. Optimized IRI model coefficients were used for prediction, and a paired t-test 

was then conducted between measured and predicted IRI. Results of the statistical analysis after 

local calibration are presented in Table 4.23, which shows significant improvement in the 

goodness-of-fit statistics. The p-value from the paired t-test was higher than 0.05, which suggests 

that there is no evidence that the predicted and measured IRI differ.  

 
Table 4.23: Statistical Analysis Results for Locally Calibrated Factors for the AC Rutting 

Model 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

59 4,711 8 0.8 0.39 Failed to reject 
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Measured versus predicted IRI with locally calibrated coefficients is shown in Figure 4.16. 

A significant improvement in data location with respect to the line of equality was observed after 

local calibration. 

 

 
Figure 4.16: Predicted vs. Measured AC IRI with Locally Calibrated Factors 

Statistical analysis results for the rutting model with the validation dataset are shown in 

Table 4.24. The p-value from the paired t-test was less than 0.05, which suggests that there is no 

evidence that the predicted and measured IRI differ for the validation dataset. However, the Se 

seemed to be extremely high for the validation set with local coefficients. 

 
Table 4.24: Summary Statistics for the Validation Set of the AC Rutting Model with Local 

Factors 

Bias SSE Se Se/Sy p-value Hypothesis, H0 : ∑(Meas.-Pred.) = 0 

267 18,938 30 1.16 0.25 Failed to Reject 
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Chapter 5: Automated Calibration 

One concern regarding PMED software implementation is the need to recalibrate after 

distress models update or as new performance data becomes available. This study presents a 

framework to automate calibration and validation processes of PMED performance models.  

 5.1 Automated Calibration Technique 

State highway agencies have often tried to implement PMED software for routine 

pavement design, but a recurring implementation challenge has been the need to calibrate the 

software locally to reflect an agency’s design and construction practices, materials, and climate. 

PMED software improvements also necessitate recalibration of performance models in the 

software (Tran et al., 2017). Since new performance data and test results are constantly becoming 

available, performance models in PMED must be continually verified to see if recalibration is 

needed (Islam, 2019). KDOT has a long-term concern regarding the time, effort, and resources 

needed to repeat local calibration.  

Development of an automatic calibration process for hydrological models has been 

rigorously investigated, and several automatic global search algorithms have been developed for 

rainfall-runoff models designed to locate the global optimum on a response surface with numerous 

local optima (Duan et al., 1992). Madsen (2000) explained that, in automatic calibration, 

parameters are adjusted automatically according to a specified search scheme and numerical 

measures of goodness-of-fit. The specified search scheme refers to the minimization of a certain 

objective function of a dataset using a suitable deterministic algorithm or optimization technique. 

Fernández (2016) further elaborated that the automated calibration process involves minimizing 

the objective function of a dataset by adjusting calibration parameters using a deterministic 

algorithm under a set of constraints. Development challenges, however, include data availability, 

availability of a robust and physically meaningful calibrated-model, and computational feasibility.  

5.1.1 Objective Function 

The objective function is a mathematical expression that must be minimized or maximized 

for a given problem. In the PMED performance model calibration process, the objective function 
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refers to the mathematical equation that minimizes the total sum squared error between measured 

and predicted distresses and IRI. The objective function used in this study is given in Equation 

5.1. 

𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆(𝑥𝑥) = ∑ [𝑓𝑓(𝑥𝑥(∅𝐿𝐿𝑜𝑜𝑐𝑐𝑒𝑒𝑒𝑒)) − 𝑦𝑦𝑜𝑜𝑜𝑜𝑚𝑚]2𝑛𝑛
𝐵𝐵=1     

 Equation 5.1 
Where: 

𝑆𝑆(𝑥𝑥) = Objective function that needs to be minimized; 

𝑓𝑓(𝑥𝑥(∅𝐿𝐿𝑜𝑜𝑐𝑐𝑒𝑒𝑒𝑒)) = Pavement ME predicted distresses or IRI for ith data point; 

∅𝐿𝐿𝑜𝑜𝑐𝑐𝑒𝑒𝑒𝑒 = Set of locally calibrated coefficients; 

𝑦𝑦𝑜𝑜𝑜𝑜𝑚𝑚 = Measured distresses or IRI for ith data point; and 

𝑛𝑛 = Total number of data points. 

5.1.2 Optimization Technique 

The automated calibration process uses a deterministic algorithm or optimization technique 

to obtain a set of locally calibrated coefficients that minimize the objective function. Several 

methods can solve the optimization problem in Equation 5.1. These methods generally iterate on 

x in some manner; an initial value of each parameter for F(x) is chosen, the objective function is 

computed, and an algorithm is applied to generate a new x that will reduce the objective function 

(Adams et al., 2018).  

Gradient-based optimization methods are well suited for effective navigation of parameters 

that minimize the objective function. This study utilized two optimization techniques, Polak and 

Ribière conjugate gradient (CG) and limited memory Broyden-Fletcher-Goldfarb-Shanno (L-

BFGS) method, to calibrate the PMED models.  

CG is a nonlinear gradient-based optimization method used to obtain local calibration 

coefficients. This method minimizes objective function 𝑆𝑆(𝑥𝑥) by applying an iterative line search 

strategy (Fernández, 2016). The line search strategy finds a descent direction along which 𝑆𝑆(𝑥𝑥) 

will be reduced and then computes a step size that determines how far x should move in that 

direction (Shewchuk, 1994). The CG technique is computationally inexpensive and converges 

quickly.  

The L-BFGS optimization technique is an iterative method for solving constrained 

nonlinear optimization problems. Similar to the CG method, this method also uses a line search 
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strategy, and the algorithm begins with an initial estimate. L-BFGS optimization technique is 

recommended for bounded problems with large sample sizes, such as 1,000 bootstrap samples. 

The L-BFGS uses a limited amount of computer memory and is one of the fastest algorithms for 

parameter estimation in machine learning problems (Mokhtari & Ribeiro, 2014). In this study, the 

global default value of PMED models was set as the initial seed values. 

 5.2 Resampling Techniques 

The local calibration guide for the PMED software, developed under the NCHRP 1-40B 

project, recommended using resampling techniques to improve prediction model accuracy. The 

local calibration guide listed traditional split sampling and jackknifing resampling approaches for 

reliable assessment of prediction accuracy. However, the guide recommended using the 

jackknifing approach for a small sample size of the calibration dataset.  

Brink (2015) calibrated and validated PMED performance models for Michigan using five 

types of sampling techniques: no sampling, traditional split sampling, repeated split sampling, 

jackknifing, and bootstrapping. The primary objective was to compare calibration results obtained 

from different resampling techniques. Brink (2015) concluded that PMED models calibrated using 

the bootstrapping sampling technique consistently showed lower standard error and bias. 

The current study incorporated traditional split sampling, jackknife, and bootstrap 

sampling techniques into the automated calibration technique.  

5.2.1 Traditional Split Sampling Approach 

Traditional split sampling is the most common sampling technique used in PMED model 

calibration studies. This approach requires that sample projects be randomly split into two subsets 

(AASHTO, 2010). One set is used to calibrate the performance models, and the other set validates 

the accuracy of the calibrated models (AASHTO, 2010). Researchers have typically used a 70-30 

split or 80-20 split of data to calibrate and validate MEPDG transfer functions. In the traditional 

split sampling approach, the calibration dataset is used to reduce model bias and standard error 

and to obtain calibration coefficients. These calibrated coefficients are then used with the 

validation dataset to verify model accuracy. Goodness-of-fit statistics are reported for both 

calibration and validation datasets. The local calibration guide for the PMED software asserts that 
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the traditional split sampling approach can produce misleading indications of model accuracy for 

small sample sizes (AASHTO, 2010).  

5.2.2 Jackknife Approach 

The jackknife method is an iterative process that uses systematic sampling to adjust 

calibration coefficients of PMED performance models. Samples are selected by taking the original 

data vector and systematically deleting one observation from the dataset. One of the n selected 

projects is left out one at a time, and calibration is performed for the n-1 samples for each iteration. 

The prediction and standard errors can then be computed from the omitted sample. Thus, if n 

pavement sections are in the dataset, the jackknife sampling technique will consist of n samples, 

each with n-1 data points in each sample subset analysis (Nisbet et al., 2009). The process of 

omitting, calibrating, and predicting is repeated until the total dataset is used for prediction. As a 

result, n values of standard error are generated, and jackknife goodness-of-fit statistics can be 

computed.  

The NCHRP 1-40B project recommends the jackknife method for small sample sizes. 

According to the report, this technique produces reliable assessments of PMED models in terms 

of prediction accuracy and goodness-of-fit statistics (AASHTO, 2010).  

5.2.3 Bootstrap Approach 

The bootstrap method is a resampling technique used to compute statistics of a population 

by sampling a dataset with replacement. For example, for a dataset of N samples or pavement 

sections, X bootstrap samples of size N are randomly selected with replacement from the original 

dataset. Each X bootstrap sample omits several sections and creates multiple copies of other 

sections, allowing a given observation or pavement section to be included in the given sample size 

more than once (Brink, 2015). The number of bootstrap repetitions, X, should be large enough to 

ensure meaningful statistics can be computed, but the number of samples can only reduce the 

effects of random sampling errors and not increase the amount of information in the original data.  

The purpose of bootstrap resampling is to gather information economically. This approach 

can estimate mean, variances, confidence intervals, and other statistical properties by utilizing the 

original data as a surrogate population to estimate sampling distribution of a statistic. For 
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AASHTOWare PMED calibration, the bootstrap method can find a distribution of optimized 

coefficients of the performance models.  

 5.3 Equivalence Testing 

Previous local calibration studies of AASHTOWare PMED software primarily used a 

traditional equivalence testing or a paired t-test to determine bias. The local calibration guide of 

the PMED software also recommends using the paired t-test to evaluate significant differences 

between measured and predicted data. A limitation of widespread use of the paired t-test, however, 

is that when the null hypothesis states the true effect size is zero, the absence of an effect can be 

rejected but not statistically supported (Lakens, 2017). In other words, the paired t-test can 

successfully conclude if measured and predicted distress data differ, but it cannot confirm 

measured and predicted distress data are the same irrespective of the statistical p-value. 

5.3.1 Traditional Equivalence Testing 

The null and alternate hypotheses for a traditional equivalence testing are 

Null hypothesis, 𝐻𝐻𝐻𝐻 ∶  𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝐵𝐵 = 𝜇𝜇𝑝𝑝𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵𝑐𝑐𝑡𝑡𝑒𝑒𝐵𝐵  
 Equation 5.2 
Alternate hypothesis, 𝐻𝐻𝐻𝐻 ∶  𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝐵𝐵 ≠ 𝜇𝜇𝑝𝑝𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵𝑐𝑐𝑡𝑡𝑒𝑒𝐵𝐵   
 Equation 5.3 

Where: 

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝐵𝐵 = Sample mean of measured distress or IRI data; and  

𝜇𝜇𝑝𝑝𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵𝑐𝑐𝑡𝑡𝑒𝑒𝐵𝐵  = Sample mean of PMED predicted distress or IRI data. 

In a traditional equivalence testing set up, these two means are assumed to be similar if the 

statistical p-value is larger than a threshold value, often 0.05, or at a 95% confidence level (i.e., 

the null hypothesis cannot be accepted). Walker and Nowacki (2011) provided two reasons why 

use of a traditional comparative test to establish equivalence often leads to incorrect conclusions. 

First, the burden of proof for statistical equivalence is on the wrong hypothesis (i.e., that of a 

difference). In this method, a significant result establishes a difference, whereas a non-significant 

result implies only that equivalency or equality cannot be ruled out. Consequently, the risk of 

incorrectly concluding equivalence can be very high. Secondly, since no margin of equivalence is 

considered in a paired t-test, the concept of equivalence is not well-defined.   
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5.3.2 Two One-Sided t-test 

Although the null hypothesis cannot be supported when the true effect size is zero, large 

effects can be rejected in a frequent hypothesis testing framework in equivalence testing. A two 

one-sided t-test (TOST) is a simple equivalence approach that specifies an upper (ΔU) and lower 

(ΔL) equivalence bound based on an equivalence margin, 𝛿𝛿 (Lakens, 2017). In TOST procedure, 

equivalence is established at the α significance level if a (1–2α) × 100% confidence interval for 

the difference in efficacies (new – current) is contained within the interval (ΔU = 𝛿𝛿, ΔL = −𝛿𝛿R ). The 

null and alternate hypothesis for the TOST equivalence testing is stated below: 

Null Hypothesis, 𝐻𝐻𝐻𝐻 ∶  𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝐵𝐵 − 𝜇𝜇𝑝𝑝𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵𝑐𝑐𝑡𝑡𝑒𝑒𝐵𝐵 ≤ −𝛿𝛿   
 Equation 5.4 
Alternate hypothesis, 𝐻𝐻𝐻𝐻 ∶  𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝐵𝐵 − 𝜇𝜇𝑝𝑝𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵𝑐𝑐𝑡𝑡𝑒𝑒𝐵𝐵 > −𝛿𝛿   
 Equation 5.5 

 and 

Null Hypothesis, 𝐻𝐻𝐻𝐻 ∶  𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝐵𝐵 − 𝜇𝜇𝑝𝑝𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵𝑐𝑐𝑡𝑡𝑒𝑒𝐵𝐵 ≥ 𝛿𝛿   
 Equation 5.6 
Alternate hypothesis, 𝐻𝐻𝐻𝐻 ∶  𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝐵𝐵 − 𝜇𝜇𝑝𝑝𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵𝑐𝑐𝑡𝑡𝑒𝑒𝐵𝐵 < 𝛿𝛿  
 Equation 5.7 

Determination of equivalence margin 𝛿𝛿 is a critical step in equivalence testing because the 

value of 𝛿𝛿 directly affects the outcome (Walker & Nowacki, 2011). A small value of 𝛿𝛿 represents 

a narrow equivalence region and makes it difficult to establish equivalence. In TOST procedure, 

accuracy of optimized calibration coefficients depends on how well the equivalence margin can 

be established in terms of relevant evidence and engineering considerations. If the p-value is 

smaller than a threshold (e.g., 0.05), then the difference between the two samples is smaller than 

the thresholds given by the equivalence margin. 

Prior to this study, the TOST procedure had not been used for equivalence testing of 

AASHTOWare PMED software-predicted data and field measured data, so no established 

equivalence margin was available for PMED models. Therefore, this study used a heuristic method 

to set equivalence margin 𝛿𝛿. First, an initial value of 𝛿𝛿 was assumed to verify PMED models with 

global coefficients. This initial value of 𝛿𝛿 for a model was assumed to be same as the limiting Se 

recommended by AASHTO (2010). After model calibration, TOST was repeated multiple times 

to compute the minimum 𝛿𝛿  value for which the equivalence between measured and predicted 
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distresses can be established. This approach of setting the equivalence margin helped determine 

the narrowest equivalence region for measured and predicted distress data. Table 5.1 lists the 

initial value of 𝛿𝛿 assumed for PMED model verification.  

 
Table 5.1: Initial Value of 𝜹𝜹 for Verification of PMED Models 

PMED Models 𝛿𝛿 value 

AC rutting  0.1 in. 

Top-down cracking 600 ft/mile 

Transverse cracking 250 ft/mile 

IRI 17 in./mile 

 5.4 Automated Calibration Methodology 

The primary goal of the automated calibration process is to employ the optimization 

technique to determine effective calibration parameters to minimize model bias and standard error. 

This study deployed a systematic method to automatically search for the optimal value of 

calibration parameters in prediction model transfer functions. 

5.4.1 Programming Routine for the Automated Technique 

The Python 3.7 programming language and Python “xlrd” library was used to read and 

format information from the Excel files (e.g., PMED outputs and distress data). The Python 

“NumPy” package was used for scientific computing within the programming routine. PMED 

model parameters were calibrated using the “SciPy” optimization package. The CG and L-BFGS 

techniques were used for transfer function parameter optimization. 

To calibrate PMED performance models using the automated technique, the user must first 

successfully run the PMED software. One of the major challenges in automating the PMED 

software calibration process is to recognize relevant software outputs for a project at a specific 

time. PMED software generates several Excel, pdf, and text files, so the developed automated 

calibration technique can search PMED output files and identify mechanistic damages and 
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distresses for a project on a specific date. The user must browse the directory where PMED 

software outputs are stored.  

The automated technique requires inputs such as number of projects, measured distresses, 

and corresponding distress collection dates. Currently, inputs are provided in a tab-delimited text 

file. After running the automated technique, the user is prompted to select a model for calibration 

and choose a sampling technique such as split sampling, jackknifing, or bootstrapping. 

After obtaining relevant damage data from the PMED output files, the application predicts 

distresses with a set of global model calibration coefficients (ΦGlobal) to verify the prediction 

model. A paired t-test is then conducted to determine initial bias between the actual data and 

AASHTOWare PMED software-predicted values at 95% confidence level. TOST is also 

conducted, and the coefficient of determination (R2), Se, and SSE are recorded. The CG or L-BFGS 

optimization technique is applied to the calibration dataset to obtain a set of model calibration 

coefficients (ΦLocal) that minimizes the SSE between measured and predicted distresses. Bias, R2, 

Se, and SSE are generated for the calibrated model. Equivalence testing is also conducted for the 

calibrated model, and the application generates graphs for measured versus predicted distress data. 

Figure 5.1 presents key steps in the automated calibration process.  
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Figure 5.1: Analysis Process for Automated Calibration Technique 

5.4.2 Incorporating Sampling Methods into the Automated Technique 

This study incorporated three types of resampling techniques into the developed automated 

calibration technique.  
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5.4.2.1 Traditional Split Sampling Approach 

Automated calibration requires project information such as the number of projects and 

project name as inputs. In the split sampling approach, the automated technique randomly divides 

the projects into calibration and validation sets. In this study, the automated calibration technique 

considered an 80-20 split of the data for calibration and validation. “Scikit-Learn” machine 

learning library in the Python programming environment was used to incorporate the traditional 

split sampling approach, and the CG technique was used for parameter optimization. 

5.4.2.2 Jackknife Sampling Approach 

The jackknife sampling approach was also incorporated to provide users with a distribution 

of values for the calibration parameter under consideration. To implement the jackknife approach 

for n number of projects, the procedure first removes one pavement section from the n projects, 

and the model calibration is performed with the remaining (n-1) set of projects. This process is 

repeated n times for all pavement sections in the database, allowing a distribution of calibration 

parameters to be obtained to help users select appropriate calibration coefficients.  

The following example is provided to explain the jackknife approach used in this study. 

Six pavement sections, A, B, C, D, E, and F are to be used for calibration. Following the jackknife 

approach, six calibration datasets can be obtained. Calibration Set 1 omits Project F, calibration 

Set 2 omits Project E, and so on. Model calibration was performed for each calibration set, 

resulting in a distribution of calibration coefficient. Twenty-five AC-over-AC sections generated 

25 jackknife samples in this study. Similarly, 18 AC-over-JPCP sections generated 18 jackknife 

samples. “Scikit-Learn” library in the Python programming environment was used to incorporate 

the jackknife sampling approach. The CG technique was used for parameter optimization. Figure 

5.2 illustrates the jackknife approach for the given example. 
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Figure 5.2: Working Method of the Jackknife Sampling Approach 

5.4.2.3 Bootstrap Approach  

This study incorporated the bootstrap sampling approach into the automated calibration 

technique. To implement the bootstrap approach for N number of projects, X bootstrap samples of 

size N are randomly selected with replacement. Each B sample omits several sections and creates 

multiple copies of other sections (Brink, 2015). Model calibration is performed for each X sample, 

and a parameter distribution can be obtained.  

The example used to explain the jackknife approach can be used to describe the bootstrap 

approach in this study as well. B calibration datasets can be obtained using the bootstrap method. 
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Calibration Set 1 omits Project F but creates a copy of Project A, Calibration Set 2 omits Project 

F but creates a copy of Project B, Calibration Set 3 omits Project B and D but creates copies of 

Projects C and E. This process can be repeated X times (i.e., 1,000 or 10,000 times). For the X 

calibration sets, model calibration is performed for each set, and a distribution of calibration 

coefficients can be obtained. A total of 1,000 bootstrap repetitions can be used in the developed 

automated calibration method. Figure 5.3 illustrates the bootstrap approach for this example. 

“Scikits.bootstrap” function was used to incorporate the bootstrap resampling approach. The L-

BFGS optimization technique was used for 1,000 bootstrap sample. 

 



122 

 
Figure 5.3: Working Method of the Bootstrap Sampling Approach 

 5.5 Local Calibration of AC-Over-AC Sections 

The automated calibration technique was used to calibrate PMED performance models for 

AC-over-AC sections listed in Table 3.3. Calibrated models include the AC rutting model, 

transverse cracking model, top-down cracking model, and the IRI model. 
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5.5.1 Permanent Deformation Model  

In PMED model calibration, the first step carried out by the automated technique is to 

verify the model with global coefficients. The automated calibration technique reported bias, SSE, 

p-value from the paired t-test, and the p-value from the TOST. Table 5.2 lists verification results 

of the rutting model for the AC-over-AC sections, confirming that p-value from the TOST was 

less than 0.05 for an equivalence margin of 0.1 in. This result suggests that PMED-predicted rut 

depth and measured rut depths were equivalent for a margin of 0.1 inches. Although the Se was 

0.06 inches, which is within the AASHTO-suggested range, the p-value from the paired t-test was 

less than 0.05, indicating evidence that the predicted and measured rut depths are different. 

 
Table 5.2: Summary Statistics for the Nationally Calibrated Rutting Model for AC-Over-AC 

Sections 
Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 

1.26 0.33 0.054 1.28 0.027 <0.001 

 

The automated calibration technique also generated the measured versus predicted total rut 

depth graph. Figure 5.4 shows measured versus predicted total rut depths with global coefficients. 

Verification results of the rutting model for the AC-over-AC sections showed that the bias between 

predicted and measured rut depths was fairly low. However, the 𝛽𝛽1r parameter was optimized 

using the automated calibration technique. Results were obtained for traditional split sampling, 

jackknife, and bootstrap sampling techniques. 
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Figure 5.4: Predicted vs. Measured Total Rutting with Globally Calibrated Factors 

 

Three types of resampling techniques were incorporated into the developed automated 

calibration process. The 𝛽𝛽1r  parameter of the rutting model was optimized using those three 

techniques. 

5.5.1.1 Traditional Split Sampling Approach 

The permanent deformation model in the AASHTOWare PMED software was calibrated 

for the AC-over-AC sections using the automated technique developed in this study. The 

automated calibration technique considers a random 80-20 split of the data for calibration and 

validation and employs the CG optimization technique for 𝛽𝛽1r parameter optimization. Table 5.3 

presents summary statistics of the rutting model for the calibration dataset. Results in the table 

show that the p-value from the TOST procedure was less than 0.05 for an equivalence margin of 

0.1 inches, suggesting the calibrated rutting model predictions were equivalent to field rut depths 
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for a margin of 0.1 inches. The p-value from the paired t-test was higher than 0.05, which suggests 

no evidence that the predicted and measured rut depths are different.  

 
Table 5.3: Summary Statistics for the Locally Calibrated Rutting Model for AC-Over-AC 

Sections 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 

-1.73 0. 25 0.046 1.07 0.24 <0.001 

 

Section 5.3.1 describes how, after calibrating the permanent deformation model, the TOST 

procedure was repeated multiple times to determine the narrowest equivalence region for measured 

and predicted rut depths. Table 5.4 presents a summary of the results of the repeated TOSTs. In 

all cases, the level of significance (α) was 0.05. Results in the table show that the calibrated rutting 

model predictions for the AC-over-AC sections were equivalent to measured rut depths for a 

margin of 0.03 inches.  

 
Table 5.4: Calibrated Model Equivalence Margin between Measured and Predicted Rutting 

Equivalence margin, 𝛿𝛿 (in.) p-value Remark 
0.1 <0.001 Equivalent 

0.075 <0.001 Equivalent 
0.05 <0.001 Equivalent 
0.03 0.014 Equivalent 
0.025 0.068 Not equivalent 

 

Measured versus predicted total rut depths with locally calibrated coefficients are shown 

in Figure 5.5. A comparison of Figures 5.4 and 5.5 shows that measured versus predicted rut 

depths with local coefficients demonstrated improved data location relative to the line of equality 

compared to measured versus predicted rut depth with global coefficients. 
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Figure 5.5: Predicted vs. Measured Total Rutting with Local Coefficients for AC-Over-AC 

Sections 

 

Summary statistics for the rutting model after validation are shown in Table 5.5. The bias 

was slightly high for the rutting model with the validation dataset for locally calibrated 

coefficients, while rutting model Se of the validation projects remained under the AASHTO-

suggested 0.1 inches. Figure 5.6 illustrates measured versus predicted rutting with local 

coefficients for the validation dataset.  

 
Table 5.5: Validation Results for the Calibrated Rutting Model for AC-Over-AC Sections 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 
(𝛿𝛿 = 0.03 in.) 

0.44 0.17 0.07 1.2 0.28 0.12 
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Figure 5.6: Predicted vs. Measured Rutting for the Validation Dataset for AC-Over-AC 

Sections 

5.5.1.2 Jackknife Approach 

The jackknife sampling approach was incorporated into the automated calibration 

technique. Only the 𝛽𝛽1r parameter of the rutting model was optimized using the CG optimization 

method. Distribution of the 𝛽𝛽1r coefficient from 24 jackknife samples for the AC-over-AC sections 

is shown in Figure 5.7. The figure shows that the 𝛽𝛽1r parameter coefficient was in the range of 

0.290–0.325 except for one instance. This range is 0.308–0.312 for 11 of the 24 jackknife samples.  
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Figure 5.7: Distribution of the 𝜷𝜷1r Parameter using Jackknife Sampling 

 

The TOST procedure was conducted multiple times for the value of 𝛽𝛽1r in the range of 

0.290–0.325, and the narrowest equivalence margin 𝛿𝛿 was determined in each case. Figure 5.8 

illustrates results of the repeated TOST for the above-mentioned range of 𝛽𝛽1r. For the value of 𝛽𝛽1r 

parameter within 0.290–0.325, the PMED-predicted rutting and measured rutting were always 

equivalent for a margin of 0.03 in. The equivalence margin was lowest (0.02 inches) for a 𝛽𝛽1r value 

of 0.325. 
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Figure 5.8: Rutting Model Equivalence Margin with Respect to the 𝜷𝜷1r Parameter 

5.5.1.3 Bootstrap Approach 

The 𝛽𝛽1r  parameter of the rutting model was optimized using the L-BFGS optimization 

technique for 1,000 bootstrap calibration datasets. Distribution of the 𝛽𝛽1r coefficient obtained from 

the 1,000 bootstrap samples for the AC-over-AC sections is shown in Figure 5.9. The figure 

demonstrates that, for approximately 460 samples, the value of 𝛽𝛽1r coefficient was between 0.29 

and 0.33. For approximately 990 bootstrap samples, the 𝛽𝛽1r coefficient was in the range of 0.24–

0.41.  
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Figure 5.9: Distribution of the 𝜷𝜷1r Parameter using the Bootstrap Resampling Approach 

 

Repeated TOST was conducted for the 𝛽𝛽1r  value ranging from 0.24 to 0.41, and the 

narrowest equivalence margin 𝛿𝛿 was determined in each case. Figure 5.10 presents results of the 

repeated TOST. For the value of 𝛽𝛽1r  parameter within the 0.24–0.41 range, PMED-predicted 

rutting and measured rut depths were equivalent for a margin of 0.05 inches. The equivalence 

margin was lowest (0.012 inches) for a 𝛽𝛽1r  value of 0.36. These findings suggest that the 

equivalence margin for PMED-predicted and measured rut depths was 12 mils when the rutting 

model coefficient 𝛽𝛽1r value was 0.36. 
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Figure 5.10: Rutting Model Equivalence Margin with Respect to the 𝜷𝜷1r Parameter 

5.5.2 Transverse Cracking Model  

The transverse cracking model was calibrated using the automated calibration technique 

for the AC-over-AC sections. The first step was to verify the model with global coefficients. 

Summation of bias, SSE, p-value from the paired t-test, and the p-value from the TOST procedure 

were reported. Table 5.6 lists summary statistics of the transverse cracking model for the AC-

over-AC sections. Results in the table show that p-value from the TOST procedure was less than 

0.05 for an equivalence margin 250 ft/mile, indicating that the PMED-predicted and measured 

transverse cracking were equivalent for a margin of 250 ft/mile. The Se was 188 ft/mile, which 

was also within the AASHTO-suggested range. However, the p-value from the paired t-test was 

less than 0.05, indicating that predicted and measured transverse cracking differ.  

 
Table 5.6: Summary Statistics for the Globally Calibrated Transverse Cracking Model 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 

-6508 3995594 188 0.95 <0.001 <0.001 

 

The measured versus predicted transverse cracking plot with global coefficients was also 

generated using the automated calibration technique. Figure 5.11 shows measured versus 
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predicted transverse cracking with global coefficients. An asymmetrical trend with respect to the 

line of equality can be observed.  

 

 
Figure 5.11: Predicted vs. Measured Transverse Cracking with Globally Calibrated 

Factors 

5.5.2.1 Traditional Split Sampling 

Verification results of the transverse cracking model for the AC-over-AC sections proved 

the necessity for model recalibration. Section 4.1.2.2 describes how the PMED transverse cracking 

model was calibrated by adjusting reflection cracking model coefficients only. The automated 

calibration technique was used to optimize the reflective cracking model transfer function 

calibration coefficients C4 and C5. As discussed, time-series damage ratio (D) and percent RCR 

values must be extracted from the “transverseReflectiveCracking.log” file with respect to the 

corresponding date to optimize C4 and C5. The automated technique can extract the required time-
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series D and RCR values from a particular file for each project. The automated technique then 

applies the CG optimization technique to determine optimized values of C4 and C5. Results are 

provided for traditional split sampling, jackknife, and bootstrap sampling techniques. 

The automated calibration technique uses a random 80-20 split of the data for calibration 

and validation. Table 5.7 presents summary statistics of the transverse cracking model for the 

calibration dataset. Results in the table show that p-value from the TOST procedure was less than 

0.05 for an equivalence margin of 250 ft/mile, indicating that the PMED-predicted transverse 

cracking and measured transverse cracking were equivalent for a margin of 250 ft/mile. The p-

value from the paired t-test after local calibration was greater than 0.05, which suggests no 

evidence that the predicted and the measured transverse cracking are different. A comparison of 

values in Table 5.6 and Table 5.7 shows that transverse cracking model goodness-of-fit statistics 

improved significantly after local calibration. 

 
Table 5.7: Summary Statistics for the Locally Calibrated Transverse Cracking Model 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 

-798 1,006,772 99 0.50 0.42 <0.001 

 

After calibration, the TOST procedure was done to determine the narrowest equivalence 

region for measured and predicted transverse cracking. Table 5.8 presents a summary of the 

repeated TOST procedure. In all cases, the level of significance (α) was 0.05. Results in the table 

show that the calibrated transverse cracking model predictions for the AC-over-AC sections were 

equivalent to measured transverse cracking for a margin of 55 ft/mile. 

 
Table 5.8: Calibrated Model Equivalence Margin between Measured and Predicted 

Transverse Cracking 
Equivalence margin, 𝛿𝛿 (ft/mile) p-value Remark 

250 <0.001 Equivalent 
150 <0.001 Equivalent 
100 0.002 Equivalent 
55 0.03 Equivalent 
50 0.06 Not equivalent 



134 

Measured versus predicted transverse cracking with locally calibrated coefficients is shown 

in Figure 5.12. A comparison of Figures 5.11 and 5.12 proves that the measured versus predicted 

transverse cracking with local coefficients showed significant improvement in data location 

relative to the line of equality compared to measured versus predicted transverse cracking with 

global coefficients. 

 

 
Figure 5.12: Predicted vs. Measured Total Rutting with Local Coefficients for AC-Over-AC 

Sections 

 

Summary statistics for the calibrated transverse cracking model after validation are 

presented in Table 5.9. The p-value from the paired t-test for the validation dataset with local 

coefficients was greater than 0.05, which suggests no evidence that the predicted and measured 

transverse cracking differ for projects considered in the validation dataset. However, the p-value 

from the TOST procedure was higher than 0.05 for an equivalence margin of 55 ft/mile, which 

suggests that predicted and measured transverse cracking were not equivalent for a margin of 55 
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ft/mile for projects in the validation dataset. Repeated TOST procedure was performed again for 

the validation dataset, and the narrowest equivalence margin was 85 ft/mile. Figure 5.13 illustrates 

measured versus predicted transverse cracking with local coefficients for the validation dataset. 

 
Table 5.9: Validation Results of the Calibrated Rutting Model for AC-Over-AC Sections 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 
(𝛿𝛿 = 55 ft/mile) 

-887 702322 148 0.89 0.29 0.2 

 

 
Figure 5.13: Predicted vs. Measured Transverse Cracking for the Validation Dataset 

5.5.2.2 Jackknife Approach 

The CG optimization method was used to optimize the C4 and C5 coefficients of the 

transverse cracking model for all AC-over-AC sections considered in this study. Figures 5.14 and 

5.15 show the distribution of C4 and C5 coefficients, respectively, using the jackknife technique. 
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Figure 5.14 shows that the range of C4 was 251–253 for 16 jackknife samples, and Figure 5.15 

shows that the value of coefficient C5 ranged from -2.45 to -2.58 for 18 jackknife samples.  

 

 
Figure 5.14: Distribution of the C4 Coefficient using the Jackknife Sampling Technique 
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Figure 5.15: Distribution of the C5 Coefficient using the Jackknife Sampling Technique 

 

The TOST procedure was repeated for a combination of C4 and C5, with C4 in the range 

of 251–253 and C5 ranging from -2.45 to -2.58. The purpose was to establish the narrowest 

equivalence margin 𝛿𝛿. Table 5.10 presents results obtained from the repeated TOST considering 

the above-mentioned combination of C4 and C5. Results showed that the calibrated transverse 

cracking predictions for the AC-over-AC sections were equivalent to measured transverse cracking 

for a margin of 55 ft/mile for all considered C4 and C5 combinations, meaning that the PMED 

transverse cracking predictions (level of significance, α = 0.05) would likely be equivalent to 

transverse cracking measured in the field for a margin of 55 ft/mile if C4 and C5 coefficients range 

from 251 to 253 and -2.45 to -2.58, respectively.  
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Table 5.10: Combination of C4 and C5 for Repeated TOST 
Calibration Coefficient C4 251 251 253 253 

Calibration Coefficient C5 -2.45 -2.58 -2.45 -2.58 

Equivalence margin, 𝛿𝛿 (ft/mile) 55 55 55 55 

5.5.2.3 Bootstrap Approach 

The C4 and C5 coefficients of the transverse cracking model were optimized using the 

bootstrap approach. One thousand bootstrap samples were optimized using the L-BFGS 

optimization technique. Figures 5.16 and 5.17 show the distribution of C4 and C5 coefficients 

using the bootstrap method. Figure 5.16 shows that the range of coefficient C4 was 266–268 for 

approximately 600 bootstrap samples. In fact, coefficient C4 was 260–269 for almost every 

bootstrap sample. Figure 5.17 shows that coefficient C5 ranged from -2.75 to -2.15 for all 

bootstrap samples.  

 

 
Figure 5.16: Distribution of the C4 Coefficient using the Bootstrap Sampling Technique 
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Figure 5.17: Distribution of the C5 Coefficient using the Bootstrap Sampling Technique 

 

TOST was repeatedly conducted for a combination of C4 and C5, with C4 in the range of 

260–269 and C5 ranging from -2.75 to -2.15. Table 5.11 presents results obtained from the 

repeated TOSTs considering the above-mentioned combination of C4 and C5. Results showed that 

calibrated transverse cracking predictions for the AC-over-AC sections were equivalent to the 

measured transverse cracking for a margin of at least 53 ft/mile for all considered C4 and C5 

combinations, meaning that PMED transverse cracking predictions (level of significance, α = 0.05) 

would likely be equivalent to transverse cracking measured in the field for a margin of 53 ft/mile 

if the C4 and C5 coefficients range from 260 to 269 and -2.15 to -2.75, respectively. 

 
Table 5.11: Combination of C4 and C5 for Repeated TOST 

Calibration Coefficient C4 260 260 269 269 

Calibration Coefficient C5 -2.15 -2.75 -2.15 -2.75 

Equivalence margin, 𝛿𝛿 50 50 50 53 
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5.5.3 Top-Down Cracking Model  

The top-down cracking model was calibrated using the automated technique developed in 

this study. All load-related cracks were longitudinal, top-down fatigue cracking. The first step was 

to verify the model with global coefficients. Summation of bias, SSE, p-value from the paired t-

test, and p-value from the TSOT procedure were reported. Table 5.12 lists summary statistics of 

verification results of the top-down cracking model. Results in in the table show that the p-value 

from the TOST procedure was higher than 0.05 for an equivalence margin of 250 ft/mile, 

suggesting that PMED-predicted and measured top-down cracking were not equivalent for a 

margin of 250 ft/mile. The Se was 2,401 ft/mile, which is higher than the AASHTO-suggested 

value of 250 ft/mile. The p-value from the paired t-test was less than 0.05, indicating that predicted 

and measured top-down cracking are different. 

 
Table 5.12: Summary Statistics for the Globally Calibrated Top-Down Cracking Model 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 

-85710 716,010,362 2401 1.39 0.0011 0.9 

 

The measured versus predicted top-down cracking plot with global coefficients was also 

generated using the automated calibration technique. Figure 5.18 shows measured versus 

predicted longitudinal cracking with global coefficients, in which the measured versus predicted 

top-down cracking shows an asymmetrical trend to the line of equality.  
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Figure 5.18: Predicted vs. Measured Top-Down Cracking with Globally Calibrated Factors 

5.5.3.1 Traditional Split Sampling  

Verification results of the longitudinal cracking model for the AC-over-AC sections 

affirmed the necessity of model recalibration. Section 4.1.3.2 describes how the PMED top-down 

cracking model can be calibrated by optimizing calibration parameters C1 and C2. The automated 

calibration technique was used to extract the values of the time-series cumulative damage index at 

the top of the surface (DItop) from the project-wise Excel output for corresponding dates. The CG 

optimization technique was applied to determine a combination of C1 and C2 parameters that 

yielded the least SSE between measured and predicted top-down cracking. 

The automated technique uses a random 80-20 split for calibration and validation. Table 

5.13 presents summary statistics of the top-down cracking model for the calibration dataset. A 

comparison of values in Tables 5.12 and 5.13 shows that goodness-of-fit statistics of the top-down 

cracking model significantly improved after local calibration. However, model Se remained higher 

than the AASHTO-suggested value.  



142 

Table 5.13: Summary Statistics for the Locally Calibrated Top-Down Cracking Model 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 

-1,835 322,233,291 1735 0.98 0.91 0.092 

 

Results in Table 5.13 show that the p-value from the paired t-test after local calibration 

was higher than 0.05, indicating that there is no evidence that the predicted and measured top-

down cracking differ. However, the p-value from the TOST was higher than 0.05 for a 𝛿𝛿 value of 

250 ft/mile, indicating that the predicted and measured top-down cracking were not equivalent for 

a margin of 250 ft/mile. The TOST procedure was then performed multiple times to determine the 

equivalence margin for measured and predicted top-down cracking. Table 5.14 presents a 

summary of the results of the repeated TOST procedures. The level of significance (α) was 0.05 

in all cases. Results in Table 5.14 show that the equivalence margin for predicted and measured 

top-down cracking was 310 ft/mile. In other words, PMED top-down cracking predictions were 

not equivalent to measured top-down cracking for any margin less than 310 ft/mile. 

 
Table 5.14: Calibrated Model Equivalence Margin between Measured and Predicted 

Rutting 
Equivalence margin, 𝛿𝛿 (ft/mile) p-value Remark 

250 0.092 Not equivalent 

260 0.083 Not equivalent 

280 0.067 Not equivalent 

300 0.053 Not equivalent 

310 0.047 Equivalent 

 

The measured versus predicted plot of longitudinal cracking with local factors is shown in 

Figure 5.19. An asymmetrical trend with respect to the line of equality can be observed.  
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Figure 5.19: Predicted vs. Measured Top-Down Cracking with Local Coefficients for AC-

Over-AC Sections 

 

Table 5.15 tabulates summary statistics for the calibrated top-down cracking model after 

validation. The p-value from the paired t-test for the validation dataset with local coefficients was 

greater than 0.05, which suggests no evidence that the predicted and measured top-down cracking 

differ for projects considered in the validation dataset. However, the p-value from the TOST 

procedure was higher than 0.05 for an equivalence margin of 310 ft/mile, indicating that the 

predicted and measured top-down cracking were not equivalent for a margin of 310 ft/mile for 

projects in the validation dataset. Repeated TOST was performed again for the validation dataset, 

and the narrowest equivalence margin was 900 ft/mile. Figure 5.20 presents measured versus 

predicted transverse cracking with local coefficients for the validation dataset. 
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Table 5.15: Validation Results for the Calibrated Rutting Model for AC-Over-AC Sections 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 
(𝛿𝛿 = 310 ft/mile) 

-2959 156,802,349 2212 1.02 0.81 0.29 

 

 
Figure 5.20: Predicted vs. Measured Top-Down Cracking for the Validation Dataset 

5.5.3.2 Jackknife Approach 

The jackknife sampling approach was integrated into the automated technique to calibrate 

the PMED top-down cracking model. Both C1 and C2 coefficients of the top-down cracking model 

were optimized for 24 AC over AC jackknife samples. The CG optimization technique was used. 

Figures 5.21 and 5.22 show the distribution of C1 and C2 coefficients using the jackknife 

technique. Figure 5.21 shows that the range of coefficient C1 was 1.87–1.93 for 16 jackknife 

samples, and Figure 5.22 shows that the value of coefficient C2 ranged from 0.07 to 0.12 for 22 

jackknife samples.  
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Figure 5.21: Distribution of the C1 Coefficient using the Jackknife Sampling Technique 
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Figure 5.22: Distribution of the C2 Coefficient using the Jackknife Sampling Technique 

 

The TOST procedure was repeatedly conducted for a combination of C1 and C2, with C1 

in the range of 1.87–1.93 and C2 in the range of 0.07–0.12. Table 5.16 presents results obtained 

from the repeated TOST for the above-mentioned combination of C1 and C2. Results showed that 

the narrowest equivalence margin for measured and predicted top-down cracking was 300 ft/mile 

for a C1 value of 1.87 and a C2 value of 0.12. These results suggest that PMED top-down cracking 

predictions (level of significance, α = 0.05) would likely be equivalent to top-down cracking 

measured in the field for a margin of 300 ft/mile if C1 and C2 coefficients are 1.87 and 0.12, 

respectively.  

 
Table 5.16: Combination of C1 and C2 for Repeated TOST for the Jackknife Technique 

Calibration Coefficient C1 1.87 1.87 1.93 1.93 

Calibration Coefficient C2 0.07 0.12 0.07 0.12 

Equivalence margin, 𝛿𝛿 (ft/mile) 400 300 375 350 
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5.5.3.3 Bootstrap Approach 

The bootstrap resampling approach was also used to optimize the C1 and C2 coefficients 

of the top-down cracking model. One thousand bootstrap samples were optimized using the L-

BFGS optimization technique. Figures 5.23 and 5.24 illustrate the distribution of C1 and C2 using 

the bootstrap technique. Figure 5.23 shows that the range of coefficient C1 was 1.88–1.93 for 975 

bootstrap samples, and Figure 5.24 shows that the value of coefficient C2 was 0.14–0.18 for each 

of the 1,000 bootstrap samples.  

 

 
Figure 5.23: Distribution of the C1 Coefficient using the Bootstrap Technique 
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Figure 5.24: Distribution of the C2 Coefficient using the Bootstrap Sampling Technique 

 

The TOST procedure was repeatedly conducted for a combination of C1 and C2, with C1 

in the range of 1.88–1.93 and C2 in the range of 0.14–0.18. Table 5.17 shows that the minimum 

equivalence margin obtained from the TOST procedures was 300 ft/mile for a C1 and C2 

combination of 1.88 and 0.14, respectively, while predicted top-down cracking using the PMED 

software (level of significance, α = 0.05) was at least 300 ft/mile off from the measured top-down 

cracking. 

 
Table 5.17: Combination of C1 and C2 for Repeated TOST for the Bootstrap Technique 

Calibration Coefficient C1 1.88 1.88 1.93 1.93 

Calibration Coefficient C2 0.14  0.18 0.14 0.18 

Equivalence margin, 𝛿𝛿 (ft/mile) 300 325 350 450 

5.5.4 IRI Model  

The IRI model was calibrated using the automated technique developed in this study and 

verified with global coefficients for the AC-over-AC pavement sections listed in Table 3.3. 
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Summation of bias, SSE, p-value from the paired t-test, and p-value from the TOST procedure 

were reported. Table 5.18 lists summary statistics of the IRI model with global coefficients. 

Results in the table show that p-value from the TOST procedure was less than 0.05 for an 

equivalence margin of 17 inches/mile, suggesting that PMED-predicted and measured IRI were 

equivalent for a margin of 17 inches/mile. The Se was 14 inches/mile, which is lower than the 

AASHTO-suggested value. The p-value from the paired t-test was less than 0.05, indicating that 

the predicted and measured IRI differ. 

 
Table 5.18: Results for the Globally Calibrated IRI Model for AC-Over-AC Sections 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 

1,516 41,829 13.8 0.99 <0.001 0.02 

 

The automated calibration technique also generated the measured versus predicted IRI plot 

with global coefficients. Figure 5.25 shows measured versus predicted IRI with global 

coefficients, specifically an asymmetrical trend with respect to the line of equality.  
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Figure 5.25: Predicted vs. Measured Top-Down Cracking with Globally Calibrated Factors 

 

Verification results of the IRI model for the AC-over-AC sections confirmed the necessity 

of model recalibration. Section 4.1.4 describes how the PMED IRI model can be calibrated by 

optimizing calibration parameters C1, C2, C3, and C4. 

The automated calibration technique can automatically extract site-specific precipitation 

and freezing index information from the PMED output file (in Excel spreadsheet). Project-specific 

soil plasticity index, subgrade soil percent passing through a US No. 4 sieve, and subgrade soil 

percent passing through a US No. 200 sieve are also automatically extracted from the 

“FlexibleIRIInput” text file generated by the PMED software for each project. In addition, project-

specific rut depth, fatigue cracking, and transverse cracking values are automatically extracted 

from output Excel files for the corresponding IRI data collection date. Finally, the optimization 

technique is applied to determine a combination of C1, C2, C3, and C4 parameters that yields the 

least SSE between measured and predicted IRI. 



151 

5.5.4.1 IRI Model Constraints  

IRI model coefficients were optimized to minimize the SSE, also resulting in improved 

model goodness-of-fit statistics. However, optimized values of coefficient C2 and C3 were 

negative. Equation 2.15 shows that the IRI model is a function of rut depth, total fatigue cracking, 

transverse cracking, and site factors, and coefficients C1, C2, C3, and C4 are direct multipliers to 

RD, FCtotal, TC, and SF, respectively. None of these coefficients can be negative since all predictor 

variables contribute positively to the progression of IRI values. Negative values of C2 and C3 

suggest that fatigue cracking and transverse cracking have regressive effects on IRI and that, if 

fatigue cracking and transverse cracking increase, IRI will decrease, which is opposite of the 

common assumption. Brink (2015) optimized PMED IRI models for Michigan and found that the 

site factor coefficient C4 could become artificially inflated to compensate for other distresses when 

minimizing the SSE simultaneously for all four model coefficients. The study optimized IRI model 

coefficients by setting bounds for model coefficients based on coefficient values obtained by other 

highway agencies.  

This study set bounds for the four calibration parameters of the IRI model (Table 5.19). 

The L-BFGS optimization technique was used for each of the sampling types since the CG 

optimization technique is not recommended for bounded problems. 

 
Table 5.19: IRI Model Coefficients Bounds in This Study 

IRI model coefficient Global value Lower bound Upper bound AC over AC AC over JPCP 
C1 40 40.8 10 1000 

C2 0.4 0.575 0.01 10 

C3 0.008 0.0014 0.0009 10 

C4 0.015 0.00825 0.0001 1 

5.5.4.2 Split Sampling Approach 

Table 5.20 presents summary statistics for the IRI model calibrated using the traditional 

split sampling approach. Results in the table show that the p-value from the paired t-test after local 

calibration was less than 0.05, indicating that there is no evidence that the predicted and measured 
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IRI are different. However, the p-value from the TOST was less than 0.05 for a 𝛿𝛿 value of 17 

inches/mile, which suggests that the predicted and measured top-down cracking were equivalent 

for a margin of 17 inches/mile. 

 
Table 5.20: Summary Statistics for the Locally Calibrated IRI Model 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 

327 24,927 15 1.08 0.04 <0.001 

 

TOST procedure was then performed multiple times to determine the narrowest equivalent 

region for measured and predicted IRI. Table 5.21 presents a summary of the results of the 

repeated TOST procedure. The level of significance (α) was 0.05 in all cases. Results in the table 

show that the equivalence margin for predicted and measured IRI was 6 inches/mile, and PMED-

predicted IRI values for the AC over AC sections were equivalent to IRI measured in the field for 

a margin of 6 inches/mile. 

 
Table 5.21: Calibrated Model Equivalence Margin between Measured and Predicted 

Rutting 
Equivalence margin, 𝛿𝛿 (in./mile) p-value Remark 

17 <0.001 Equivalent 

10 <0.001 Equivalent 

7 <0.001 Equivalent 

6 0.03 Equivalent 

5 0.11 Not equivalent 

 

The measured versus predicted plot of IRI with local factors is shown in Figure 5.26. A 

comparison of data in Figures 5.25 and 5.26 reveals significantly improved data location after 

calibration relative to the line of equality. 
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Figure 5.26: Predicted vs. Measured Top-Down Cracking with Local Coefficients for AC-

Over-AC Sections 

 

Summary statistics for the calibrated IRI model after validation are presented in Table 

5.22. The p-value from the paired t-test for the validation dataset with local coefficients was less 

than 0.05, indicating that predicted and measured IRI differ for projects in the validation dataset 

with local coefficients. The p-value from the TOST was higher than 0.05 for an equivalence margin 

of 3 inches/mile, which suggests that predicted and measured transverse cracking were not 

equivalent for a margin of 3 inches/mile for projects in the validation dataset. TOST was repeatedly 

performed for the validation dataset, and the narrowest equivalence margin was 20 inches/mile. 

Figure 5.27 presents measured versus predicted transverse cracking with local coefficients for the 

validation dataset. 
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Table 5.22: Validation Results for the Calibrated IRI Model for AC-Over-AC Sections 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 
(𝛿𝛿 = 7 in./mile) 

482 13,965 14 1.12 <0.001 0.99 

 

 
Figure 5.27: Predicted vs. Measured Top-Down Cracking for the Validation Dataset 

5.5.4.3 Jackknife Approach 

The jackknife sampling approach was also used to calibrate the PMED IRI model. The C1, 

C2, C3, and C4 coefficients of the IRI model were optimized for 24 jackknife samples for the AC-

over-AC sections considered in this study. Figures 5.28–5.31 show the distribution of C1, C2, C3, 

and C4 coefficients using the jackknife technique. These figures demonstrate the following: 

• Coefficient C1 had a range of 145.0–159 for 22 of 24 jackknife samples.  

• The value of coefficient C2 was 0.09–0.098 for all jackknife samples. 

• The value of coefficient C3 was 0.0009–0.0039 for 24 jackknife samples. 

• The range of C4 parameter was 0.008–0.009 for 22 jackknife samples. 
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TOST was repeatedly conducted for a combination of C1, C2, C3, and C4, with C1 in the 

range of 42.0–42.5, C2 in the range of 0.10–0.15, C3 in the range of 0.009–0.0016, and C4 in the 

range of 0.26–0.29. Results showed that the narrowest equivalence margin for measured and 

predicted IRI varied from 7 inches/mile to 10 inches/mile, suggesting that calibrated IRI 

predictions (level of significance, α = 0.05) would likely be equivalent to IRI measured in the field 

for a margin of 7–10 inches/mile if C1, C2, C3, and C4 coefficients are in the range of 145.0–159, 

0.09–0.098, 0.0009–0.0039, and 0.008–0.009, respectively. 

 

 
Figure 5.28: Distribution of the C1 Coefficient of the IRI Model using the Jackknife 

Technique 
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Figure 5.29: Distribution of the C2 Coefficient of the IRI Model using the Jackknife 

Technique 

 

 
Figure 5.30: Distribution of the C3 Coefficient of the IRI Model using the Jackknife 

Technique 
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Figure 5.31: Distribution of the C4 Coefficient of the IRI Model using the Jackknife 

Technique 

5.5.4.4 Bootstrap Approach 

The bootstrap resampling approach was implemented to optimize IRI model coefficients. 

One thousand bootstrap samples were considered. Figures 5.32–5.35 show the distribution of C1, 

C2, C3, and C4 coefficients using the bootstrap technique. These figures also show the following: 

• Coefficient C1 had a range of 40.5–53.5 for 850 bootstrap samples. 

• The value of coefficient C2 was 0.34–0.41 for more than 950 bootstrap 

samples. 

• The value of coefficient C3 was 0.0074–0.0082 for more than 950 bootstrap 

samples. 

• The range of C4 parameter was 0.001–0.002 for more than 900 bootstrap 

samples. 

The TOST was repeatedly conducted for a combination of C1, C2, C3, and C4, with C1 in 

the range of 40.5–53.5, C2 in the range of 0.34–0.41, C3 in the range of 0.0074–0.0082, and C4 in 

the range of 0.001–0.002. Results showed that the narrowest equivalence margin for measured and 



158 

predicted IRI varied between 10 inches/mile and 15 inches/mile, suggesting that calibrated IRI 

predictions (level of significance, α = 0.05) would likely be equivalent to IRI measured in the field 

for a margin of 15 inches/mile if C1, C2, C3, and C4 coefficients are in the range of 40.5–53.5, 

0.34–0.41, 0.0074–0.0082, and 0.001–0.002, respectively. 

 

 
Figure 5.32: Distribution of the C1 Coefficient of the IRI Model using the Bootstrap 

Technique 
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Figure 5.33: Distribution of the C2 Coefficient of the IRI Model using the Bootstrap 

Technique 

 

 
Figure 5.34: Distribution of the C3 Coefficient of the IRI Model using the Bootstrap 

Technique 
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Figure 5.35: Distribution of the C4 Coefficient of the IRI Model using the Bootstrap 

Technique 

 5.6 Local Calibration of AC-over-JPCP Sections 

The automated calibration technique was used to calibrate PMED performance models for 

the AC-over-JPCP sections listed in Table 3.4. The calibrated models were permanent 

deformation model, transverse cracking model, top-down cracking model, and the IRI model. 

5.6.1 Permanent Deformation Model  

The permanent deformation model in the AASHTOWare PMED software was calibrated 

for the AC-over-JPCP sections using the automated technique developed in this study. The 

automated technique first verified the globally calibrated rutting model and reported bias, SSE, p-

value from the paired t-test, and p-value from the TOST. Table 5.23 lists verification results of 

the rutting model for the AC-over-JPCP sections. Results in the table show that the p-value from 

the TOST was less than 0.05 for an equivalence margin of 0.1 inches, suggesting that the globally 

calibrated PMED rut depth and measured rut depth were equivalent for a margin of 0.1 inches. 

The Se was 0.04 inches, which is within the AASHTO-suggested range, and the p-value from the 

paired t-test was less than 0.05, indicating that predicted rut depth and measured rut depth differ. 
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Table 5.23: Results for the Nationally Calibrated Rutting Model for AC-Over-JPCP 
Sections 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 

4.61 0.44 0.04 0.92 <0.001 <0.001 

 

The automated calibration technique also generated the measured versus predicted total rut 

depth graph. Figure 5.36 shows measured versus predicted total rut depths with global 

coefficients. The measured versus predicted rutting with global factors shows an unsymmetrical 

trend to the line of equality. 

 

 
Figure 5.36: Predicted vs. Measured Rutting with Global Factors for AC-Over-JPCP 

Sections 

 

Verification results of the rutting model for the AC-over-JPCP sections showed that model 

calibration of the total rutting model is required for AC-over-JPCP sections. The 𝛽𝛽1r parameter 
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was optimized using the automated calibration technique for JPCP rehabilitated sections. Results 

were obtained for traditional split sampling, jackknifing, and bootstrapping sampling techniques. 

5.6.1.1 Traditional Split Sampling Approach 

Traditional split sampling was used to calibrate and validate the total permanent 

deformation model for AC-over-JPCP sections using the automated technique. The CG 

optimization technique was used for the split sampling approach. Table 5.24 presents summary 

statistics of the rutting model for the calibration dataset. Results in the table show that the p-value 

from the TOST procedure was less than 0.05 for an equivalence margin of 0.1 inches, suggesting 

that calibrated rutting model predictions are equivalent to the field rut depth for a margin of 0.1 

inches. The p-value from the paired t-test was higher than 0.05, which suggests that there is no 

evidence that the predicted and measured rut depths differ. 

 
Table 5.24: Summary Statistics for the Locally Calibrated Rutting Model for AC-Over-

JPCP Sections 

Bias SSE Se Se/Sy p-value from paired t-test p-value from two one-sided t-test 

0.16 0. 12 0.04 0.88 0.62 <0.001 

 

The calibrated model was then used to conduct repeated TOST procedures to determine 

the narrowest equivalence region for measured and predicted rut depth. Table 5.25 presents a 

summary of results of the repeated TOST. In all cases, the level of significance (α) was 0.05. 

Results in the table show that calibrated rutting model predictions for the AC-over-JPCP sections 

were equivalent to measured rut depths for a margin of 0.015 inches. 
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Table 5.25: Calibrated Model Equivalence Margin between Measured and Predicted 
Rutting 

Equivalence margin, 𝛿𝛿 (in.) p-value Remark 

0.100 <0.001 Equivalent 

0.075 <0.001 Equivalent 

0.05 <0.001 Equivalent 

0.025 <0.001 Equivalent 

0.015 0.03 Equivalent 

0.010 0.15 Not equivalent 

 

Measured versus predicted total rut depths with locally calibrated coefficients is shown in 

Figure 5.37. A comparison of Figures 5.36 and 5.37 demonstrates improved data location relative 

to the line of equality for the measured versus predicted rut depths with local coefficients. 
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Figure 5.37: Predicted vs. Measured Total Rutting with Local Coefficients for AC-Over-

JPCP Sections 

 

Summary statistics for the rutting model after validation are shown in Table 5.26. The bias 

and SSE of the calibrated rutting model with the validation dataset for locally adjusted coefficients 

were extremely low, and the rutting model Se of the validation projects remained under the 

AASHTO-suggested 0.1 inches. Figure 5.38 illustrates measured versus predicted rutting with 

local coefficients for the validation dataset. The p-value from the paired t-test for the validation 

dataset with local coefficients was greater than 0.05, which suggests that there is no evidence that 

the predicted and measured rutting differ for projects considered in the validation dataset. 

However, the p-value from the TOST was higher than 0.05 for an equivalence margin of 0.01 

inches, indicating that the predicted and measured total rutting were not equivalent for a margin of 

0.01 in. for projects in the validation dataset. Repeated TOST was performed again for the 

validation dataset, and the narrowest equivalence margin was 0.025 inches. 
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Table 5.26: Validation Results for the Calibrated Rutting Model for AC-Over-JPCP 
Sections 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 
(𝛿𝛿 = 0.015 in.) 

0.003 0.03 0.04 0.9 0.98 0.24 

 

 
Figure 5.38: Predicted vs. Measured Rutting for the Validation Dataset for AC-Over-JPCP 

Sections 

5.6.1.2 Jackknife Approach 

The jackknife sampling approach was incorporated into the automated calibration 

technique to calibrate the total permanent deformation model for AC-over-JPCP sections. The CG 

optimization technique was used. Distribution of the 𝛽𝛽1r coefficient from the 18 jackknife samples 

for the AC-over-JPCP sections is illustrated in Figure 5.39. The figure shows that the 𝛽𝛽1r parameter 

coefficient was always in the range of 1.53–1.74, specifically 1.64–1.74 for 14 of the 18 jackknife 

samples. 



166 

 
Figure 5.39: Distribution of the 𝜷𝜷1r Parameter using Jackknife Sampling 

 

The repeated TOST procedure was then conducted for the 𝛽𝛽1r value ranging from 1.53 to 

1.74, and the narrowest equivalence margin 𝛿𝛿 was determined in each case. Figure 5.40 presents 

results of the repeated TOST for the above-mentioned range of 𝛽𝛽1r. For the value of 𝛽𝛽1r parameter 

within 1.53–1.74, PMED-predicted rutting and measured rutting were always equivalent for a 

margin of 0.02 inches. The equivalence margin was lowest (0.011 inches) for a 𝛽𝛽1r value of 1.72. 
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Figure 5.40: Rutting Model Equivalence Margin with Respect to the 𝜷𝜷1r Parameter 

5.6.1.3 Bootstrap Approach 

The 𝛽𝛽1r parameter of the rutting model was optimized using 1,000 bootstrap calibration 

datasets. The L-BFGS optimization technique was used. Distribution of the 𝛽𝛽1r  coefficient 

obtained using the bootstrap resampling technique for the AC-over-JPCP sections is illustrated in 

Figure 5.41. The figure shows that the value of 𝛽𝛽1r coefficient was 1.59–1.68 for approximately 

250 bootstrap samples and 1.69–1.78 for approximately 200 samples. The 𝛽𝛽1r  coefficient was 

1.38–1.89 for approximately 850 bootstrap samples. 

Repeated TOST was conducted for the 𝛽𝛽1r  value ranging from 1.38 to 1.89, and the 

narrowest equivalence margin 𝛿𝛿 was determined in each case. Figure 5.42 presents results of the 

repeated TOST. For the value of the 𝛽𝛽1r parameter within the 1.38–1.89 range, PMED-predicted 

and measured rut depths were equivalent for a margin of 0.03 inches. The equivalence margin was 

lowest (0.011 inches) for a 𝛽𝛽1r value of 1.72. 
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Figure 5.41: Distribution of the 𝜷𝜷1r Parameter using the Bootstrap Resampling Approach 

 

 
Figure 5.42: Rutting Model Equivalence Margin with Respect to the 𝜷𝜷1r Parameter 
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5.6.2 Transverse Cracking Model  

The transverse cracking model was calibrated using the automated calibration technique 

for the AC-over-JPCP sections. The globally calibrated model was verified, and the summation of 

bias and SSE, p-value from the paired t-test, and p-value from the TOST procedure were reported 

by the automated calibration technique. Table 5.27 lists summary statistics of the transverse 

cracking model for the AC-over-JPCP sections. Results in the table show that p-value from the 

TOST procedure was higher than 0.05 for an equivalence margin of 250 ft/mile, suggesting that 

PMED-predicted and measured transverse cracking were not equivalent for a margin 250 ft/mile. 

The Se was 620 ft/mile, which is also outside the AASHTO-suggested range. However, the p-value 

from the paired t-test was higher than 0.05, which suggests that predicted and measured transverse 

cracking do not differ. 

 
Table 5.27: Results for Globally Calibrated Transverse Cracking Model for AC-Over-JPCP 

Sections 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 

6,778 19,356,533 619 1.28 0.13 0.1 

 

The automated calibration technique generated the measured versus predicted transverse 

cracking plot with global coefficients. Figure 5.43 shows measured versus predicted transverse 

cracking with global coefficients. An asymmetrical trend to the line of equality can be observed. 
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Figure 5.43: Predicted vs. Measured Transverse Cracking for AC-Over-JPCP Sections 

(Global Factors) 

 

Verification results of the transverse cracking model for the AC-over-JPCP sections 

confirmed the necessity of model recalibration. This study calibrated the PMED transverse 

cracking model for JPCP rehabilitated sections by adjusting the reflection cracking model 

coefficients only. Time-series damage ratio D and percent RCR values were extracted from the 

PMED output “transverseReflectiveCracking.log” file for the corresponding dates to optimize 

coefficients C4 and C5. Traditional split sampling, jackknife, and bootstrap sampling techniques 

were applied. 

5.6.2.1 Traditional Split Sampling Approach 

The CG optimization technique was used for the split sampling approach. Table 5.28 

presents summary statistics of the transverse cracking model for the calibration dataset. Results in 

the table show that p-value from the TOST procedure was less than 0.05 for an equivalence margin 

of 250 ft/mile, suggesting that PMED-predicted transverse cracking and measured transverse 

cracking were equivalent after local calibration for a margin of 250 ft/mile. The p-value from the 

paired t-test after local calibration was greater than 0.05, which suggests that there is no evidence 
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that the predicted and measured transverse cracking differ. A comparison of values in Table 5.27 

and Table 5.28 shows that transverse cracking model goodness-of-fit statistics improved 

significantly after local calibration. 

 
Table 5.28: Summary Statistics for the Locally Calibrated Transverse Cracking Model 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 

152 10,986,436 478 0.99 0.96 <0.001 

 

The repeated TOST procedure was done after calibration to determine the narrowest 

equivalence region for measured and predicted transverse cracking. Table 5.29 presents a 

summary of results of the repeated TOST procedure. In all cases, the level of significance (α) was 

0.05. Results in Table 5.29 show that the calibrated transverse cracking model predictions for the 

AC-over-JPCP sections were equivalent to measured transverse cracking for a margin of 100 

ft/mile. 

 
Table 5.29: Calibrated Model Equivalence Margin for Measured and Predicted Transverse 

Cracking 
Equivalence margin, 𝛿𝛿 (ft/mile) p-value Remark 

250 <0.001 Equivalent 

225 0.004 Equivalent 

200 0.09 Not equivalent 

 

Measured versus predicted transverse cracking with locally calibrated coefficients is shown 

in Figure 5.44. A comparison of Figures 5.43 and 5.44 shows minimal improvement in data 

location relative to the line of equality for measured versus predicted transverse cracking with local 

coefficients. 
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Figure 5.44: Predicted vs. Measured Transverse Cracking for AC-Over-JPCP Sections 

(Local Factors) 

 

Summary statistics for the calibrated transverse cracking model after validation are 

presented in Table 5.30. The p-value from the paired t-test for the validation dataset with local 

coefficients was greater than 0.05, which suggests that there is no evidence that the predicted and 

measured transverse cracking differ for projects considered in the validation dataset. However, the 

p-value from the TOST procedure was higher than 0.05 for an equivalence margin of 100 ft/mile, 

indicating that predicted and measured transverse cracking were not equivalent for a margin of 

100 ft/mile for projects in the validation dataset. Repeated TOST procedure was performed again 

for the validation dataset, and the narrowest equivalence margin was 500 ft/mile. Figure 5.45 

presents measured versus predicted transverse cracking with local coefficients for the validation 

dataset.  
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Table 5.30: Validation Results for the Calibrated Rutting Model for AC-Over-JPCP 
Sections 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 
(𝛿𝛿 = 100 ft/mile) 

3,350 7,976,820 735 1.0 0.22 0.78 

 

 
Figure 5.45: Predicted vs. Measured Transverse Cracking for the Validation Dataset 

5.6.2.2 Jackknife Approach 

The C4 and C5 coefficients of the transverse cracking model were optimized for the AC-

over-JPCP sections considered in this study. The CG optimization technique was used. Figures 

5.46 and 5.47 show the distribution of C4 and C5 coefficients, respectively, using the jackknife 

technique. Figure 5.46 shows that the range of C4 was 1020–1130 for 16 of 18 jackknife samples, 

and Figure 5.47 shows that the value of coefficient C5 ranged from -0.07 to -0.02 for 17 jackknife 

samples.  
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Figure 5.46: Distribution of the C4 Coefficient using the Jackknife Sampling Technique 

 

 
Figure 5.47: Distribution of the C5 Coefficient using the Jackknife Sampling Technique 
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The repeated TOST procedure was conducted with C4 in the range of 1020–1130 and C5 

ranging from -0.07 to -0.02. Table 5.31 presents results obtained from the repeated TOST 

considering the above-mentioned combination of C4 and C5. Results showed that calibrated 

transverse cracking predictions for the AC-over-JPCP sections were equivalent to measured 

transverse cracking for a margin of 175 ft/mile for all considered C4 and C5 combinations, 

suggesting that PMED-transverse cracking predictions (level of significance, α = 0.05) would 

likely be equivalent to transverse cracking measured in the field for a margin of 175 ft/mile if the 

C4 and C5 coefficients range from 1020 to 1130 and -0.07 to -0.02, respectively. 

 
Table 5.31: Combination of C4 and C5 for Repeated TOST 

Calibration Coefficient C4 1020 1020 1130 1130 

Calibration Coefficient C5 -0.02 -0.07 -0.02 -0.07 

Equivalence margin, 𝛿𝛿 (ft/mile) 125 135 175 175 

5.6.2.3 Bootstrap Approach 

The C4 and C5 coefficients of transverse cracking model were optimized using the 

bootstrapping approach for AC-over-JPCP sections. One thousand bootstrap samples were 

optimized using the L-BFGS optimization technique. Figures 5.48 and 5.49 show the distribution 

of C4 and C5 coefficients using the bootstrap technique. Figure 5.48 shows that the range of 

coefficient C4 was 830–1120 for approximately 800 bootstrap samples and 970–1120 for 

approximately 600 bootstrap samples. Figure 5.49 shows that the value of coefficient C5 ranged 

from -0.09 to -1.50 for approximately 800 bootstrap samples.  
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Figure 5.48: Distribution of the C4 Coefficient using the Bootstrap Sampling Technique 

 

 
Figure 5.49: Distribution of the C5 Coefficient using the Bootstrap Sampling Technique 
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The TOST procedure was then conducted repeatedly with C4 in the range of 830–1120 and 

C5 ranging from -0.09 to -1.50. Table 5.32 presents results obtained from the repeated TOSTs 

considering the above-mentioned combination of C4 and C5. Results showed that the PMED 

transverse cracking predictions (level of significance, α = 0.05) would likely be at least 200 ft/mile 

from the transverse cracking measured in the field. 

 
Table 5.32: Combination of C4 and C5 for Repeated TOST 

Calibration Coefficient C4 830 830 1120 1120 

Calibration Coefficient C5 -0.09 -1.50 -0.09 -1.50 

Equivalence margin, 𝛿𝛿 210 215 200 205 

5.6.3 Top-Down Cracking Model 

The top-down cracking model was calibrated for the AC-over-JPCP sections using the 

automated technique developed in this study. All load-related cracks were top-down cracking. The 

first step was to verify the model with global coefficients. Summation of bias, SSE, p-value from 

the paired t-test, and p-value from the TOST procedure were reported. Table 5.33 lists summary 

statistics of the top-down cracking model. Results in in the table show that the p-value from the 

TOST procedure was higher than 0.05 for an equivalence margin of 250 ft/mile, suggesting that 

PMED-predicted and measured top-down cracking were not equivalent for a margin 250 ft/mile. 

The Se was 862 ft/mile, which is higher than the AASHTO-suggested value of 250 ft/mile. The p-

value from the paired t-test was less than 0.05, indicating that predicted and measured transverse 

cracking differ. 

 
Table 5.33: Results for the Globally Calibrated Top-Down Cracking Model for AC-Over-

JPCP Sections 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 

40639 73,077,300 862 0.99 <0.001 0.99 
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The automated technique generated the measured versus predicted top-down cracking plot 

with global coefficients, as shown in Figure 5.50, which shows an asymmetrical trend to the line 

of equality for the measured versus predicted top-down cracking. 

 

 
Figure 5.50: Predicted vs. Measured Top-Down Cracking with Globally Calibrated Factors 

 

Verification results of the longitudinal cracking model for the AC-over-JPCP sections 

confirmed the necessity for model recalibration. The PMED top-down cracking model for AC-

over-JPCP sections was calibrated by optimizing calibration parameters C1 and C2. The automated 

calibration technique was used to extract DItop values from the PMED output Excel files for each 

project at the corresponding dates. The optimization technique in the automated technique 

computed a combination of C1 and C2 parameters that yielded the least SSE between measured 

and predicted top-down cracking. 
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5.6.3.1 Traditional Split Sampling Approach 

The traditional split sampling approach was incorporated into the automated technique to 

calibrate and validate the top-down cracking model for AC-over-JPCP sections. Table 5.34 

presents summary statistics of the top-down cracking model for the calibration dataset. A 

comparison of the values in Tables 5.33 and Table 5.34 show that the model bias and SSE 

decreased significantly, and Se increased slightly after local calibration. The p-value from the 

paired t-test after local calibration was higher than 0.05, which suggests that there is no evidence 

that the predicted and measured transverse cracking are different. However, the p-value from the 

TOST was higher than 0.05 for a 𝛿𝛿 value of 250 ft/mile, indicating that predicted and measured 

top-down cracking were not equivalent for a margin of 250 ft/mile. 

 
Table 5.34: Summary Statistics for the Locally Calibrated Top-Down Cracking Model 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 

7492 48,740,603 871 1.01 0.29 0.11 

 

The TOST procedure was performed multiple times to determine the equivalence margin 

for measured and predicted top-down cracking. Table 5.35 presents the summary of results of the 

repeated TOST procedures. The level of significance (α) was 0.05 in all cases. Results in Table 

5.35 show that the equivalence margin for predicted and measured top-down cracking was 305 

ft/mile; PMED top-down cracking predictions were not equivalent to measured top-down cracking 

for any margin less than 305 ft/mile. 

 
Table 5.35: Calibrated Model Equivalence Margin between Measured and Predicted 

Rutting 
Equivalence margin, 𝛿𝛿 (ft/mile) p-value Remark 

250 0.113 Not equivalent 

275 0.082 Not equivalent 

300 0.052 Not equivalent 

305 0.047 Equivalent 
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Measured versus predicted plot of longitudinal cracking with local factors is shown in 

Figure 5.51. An asymmetrical trend with respect to the line of equality can be observed. 

 

 
Figure 5.51: Predicted vs. Measured Top-Down Cracking with Local Coefficients for AC-

Over-JPCP 

 

Table 5.36 tabulates summary statistics for the calibrated top-down cracking model after 

validation. The p-value from the paired t-test for the validation dataset with local coefficients was 

greater than 0.05, which suggests that there is no evidence that the predicted and measured top-

down cracking differ for projects considered in the validation dataset. However, the p-value from 

the TOST was higher than 0.05 for an equivalence margin of 305 ft/mile, indicating that predicted 

and measured top-down cracking were not equivalent for a margin of 305 ft/mile for projects in 

the validation dataset. Repeated TOST was performed again for the validation dataset, and the 

narrowest equivalence margin was 850 ft/mile. Figure 5.52 presents measured versus predicted 

transverse cracking with local coefficients for the validation dataset. 
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Table 5.36: Validation Results for the Calibrated Top-Down Cracking Model for AC-Over-
JPCP Sections 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 
(𝛿𝛿 = 305 ft/mile) 

8228 18,644,157 909 1.02 0.053 0.75 

 

 
Figure 5.52: Predicted vs. Measured Top-Down Cracking for the Validation Dataset 

5.6.3.2 Jackknife Approach 

The jackknife sampling approach was incorporated into the automated technique to 

calibrate the PMED top-down cracking model for AC-over-JPCP sections. Both C1 and C2 

coefficients of the top-down cracking model were optimized for 18 jackknife samples. Figures 

5.53 and 5.54 show the distribution of C1 and C2 coefficients using the jackknife technique. Figure 

5.53 shows that the range of coefficient C1 was 2.26–2.61 for 15 jackknife samples, and Figure 

5.54 shows that the value of coefficient C2 was 0.09–0.18 for 16 jackknife samples.  
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Figure 5.53: Distribution of the C1 Coefficient using the Jackknife Sampling Technique 
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Figure 5.54: Distribution of the C2 Coefficient using the Jackknife Sampling Technique 

 

The repeated TOST procedure was conducted for a combination of C1 and C2, with C1 in 

the range of 2.26–2.61 and C2 in the range of 0.09–0.18. Table 5.37 presents results obtained from 

the repeated TOST for the above-mentioned combination of C1 and C2. Results showed that the 

narrowest equivalence margin for measured and predicted top-down cracking was 200 ft/mile for 

a C1 value of 2.26 and a C2 value of 0.18. These results suggest that PMED top-down cracking 

predictions (level of significance, α = 0.05) would likely be equivalent to top-down cracking 

measured in the field for a margin of 200 ft/mile if the C1 and C2 coefficients are 2.61 and 0.18, 

respectively. 

 
Table 5.37: Combination of C1 and C2 for Repeated TOST for the Jackknife Technique 

Calibration Coefficient C1 2.26 2.26 2.61 2.61 

Calibration Coefficient C2 0.09 0.18 0.09 0.18 

Equivalence margin, 𝛿𝛿 (ft/mile) 325 200 250 340 
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5.6.3.3 Bootstrap Approach 

The bootstrap resampling approach was used to optimize the C1 and C2 coefficients of the 

top-down cracking model. One thousand bootstrap samples were optimized using the L-BFGS 

optimization technique. Figures 5.55 and 5.56 show the distribution of C1 and C2 using the 

bootstrap technique. Figure 5.55 shows that the range of coefficient C1 was 2.35–2.55 for 

approximately 950 bootstrap samples, and Figure 5.56 shows that the value of coefficient C2 was 

in the range of 0.08–0.21 for approximately 925 bootstrap samples.  

 

 
Figure 5.55: Distribution of the C1 Coefficient using the Bootstrap Technique 
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Figure 5.56: Distribution of the C2 Coefficient using the Bootstrap Technique 

 

The TOST procedure was repeatedly conducted for a combination of C1 and C2, with C1 

in the range of 2.35–2.55 and C2 in the range of 0.08–0.18. Table 5.38 presents the results. The 

minimum equivalence margin obtained from the TOST procedures was 185 ft/mile for a C1 and 

C2 combination of 2.55 and 0.08, respectively. Predicted top-down cracking (level of significance, 

α = 0.05) using the PMED software was equivalent to measured top-down cracking for a margin 

of 185 ft/mile. 

 
Table 5.38: Combination of C1 and C2 for Repeated TOST for the Bootstrap Technique 

Calibration Coefficient C1 2.35 2.35 2.55 2.55 

Calibration Coefficient C2 0.08  0.21 0.08 0.21 

Equivalence margin, 𝛿𝛿 (ft/mile) 300 250 185 350 
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5.6.4 IRI Model  

The IRI model was calibrated for the AC-over-JPCP sections using the automated 

calibration technique and verified with global coefficients. The summation of bias, SSE, p-value 

from the paired t-test, and p-value from the TOST procedure were reported. Table 5.39 lists 

summary statistics of the IRI model with global coefficients. Results in the table show that p-value 

from the TOST procedure was greater than 0.05 for an equivalence margin of 17 inches/mile, 

suggesting that PMED-predicted IRI with global coefficients and measured IRI were not 

equivalent for a margin of 17 inches/mile. The Se was 10 inches/mile, which is lower than the 

AASHTO-suggested value of 17 inches/mile. The p-value from the paired t-test was less than 0.05, 

which suggests that measured and predicted IRI are different. 

 
Table 5.39: Results for the Globally Calibrated IRI Model for AC-Over-JPCP Sections 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 

1,406 38,586 10 0.98 <0.001 0.99 

 

The automated calibration technique generated the measured versus predicted IRI plot with 

global coefficients. Figure 5.57 shows measured versus predicted IRI with global coefficients. An 

asymmetrical trend with respect to the line of equality for the measured versus predicted IRI can 

be observed. 
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Figure 5.57: Predicted vs. Measured IRI with Global Factors for AC-Over-JPCP Sections 

 

Verification results of the IRI model for JPCP rehabilitated sections confirmed the 

necessity of model recalibration. Project-specific precipitation and freezing index, soil plasticity 

index, subgrade soil percent passing through a US No. 4 sieve, and subgrade soil percent passing 

through a US No. 200 sieve were automatically extracted using the automated technique. 

Furthermore, project-specific rut depth, fatigue cracking, and transverse cracking values were 

extracted from the output Excel files for the corresponding IRI data collection date. Finally, the 

PMED IRI model for AC over JPCP sections was calibrated by optimizing calibration parameters 

C1, C2, C3, and C4. Since none of the IRI model coefficients had negative values, parameter 

bounds were used as listed in Table 5.17. 

5.6.4.1 Split Sampling Approach 

Table 5.40 presents summary statistics for the IRI model calibrated using the traditional 

split sampling approach. Results in the table show that the model goodness-of-fit statistics 

significantly improved after local calibration. The p-value from the paired t-test after local 
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calibration was higher than 0.05, which suggests that there is no evidence that the predicted and 

measured IRI are different. The p-value from the TOST was less than 0.05 for a 𝛿𝛿 value of 17 

inches/mile, indicating that predicted and measured top-down cracking were equivalent for a 

margin of 17 inches/mile. 

 
Table 5.40: Summary Statistics for the Locally Calibrated IRI Model 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 

0.16 3,928 8 0.78 0.99 <0.001 

 

The TOST procedure was then performed multiple times to determine the narrowest 

equivalence region for measured and predicted IRI. Table 5.41 presents a summary of the results 

of the repeated TOST procedure. The level of significance (α) was 0.05 in all cases. Results in 

Table 5.41 show that the equivalence margin for predicted and measured IRI was 3 inches/mile, 

while PMED-predicted IRI values for the AC-over-JPCP sections were equivalent to IRI measured 

in the field for a margin of 3 inches/mile.  

 
Table 5.41: Calibrated Model Equivalence Margin between Measured and Predicted 

Rutting 
Equivalence margin, 𝛿𝛿 (in./mile) p-value Remark 

17 <0.001 Equivalent 

10 <0.001 Equivalent 

5 <0.001 Equivalent 

3 0.03 Equivalent 

2 0.10 Not equivalent 

 

The measured versus predicted plot of IRI with local factors is shown in Figure 5.58. A 

comparison of data in Figures 5.57 and 5.58 shows significant improvement in data location 

relative to the line of equality after model calibration. 
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Figure 5.58: Predicted vs. Measured IRI with Local Coefficients for AC-Over-JPCP 

Sections 

 

Summary statistics for the calibrated IRI model after validation are presented in Table 

5.42. The p-value from the paired t-test for the validation dataset with local coefficients was higher 

than 0.05, which suggests that there is no evidence that the predicted and measured IRI differ for 

projects in the validation dataset. However, the Se was high with local coefficients for the 

validation dataset, and the p-value from the TOST was higher than 0.05 for an equivalence margin 

of 3 inches/mile, which suggests that predicted and measured IRI were not equivalent for a margin 

of 3 inches/mile for projects in the validation dataset. The TOST procedure was repeatedly 

performed for the validation dataset, and the narrowest equivalence margin was 16 inches/mile. 

Figure 5.59 illustrates measured versus predicted transverse cracking with local coefficients for 

the validation dataset. 

 
Table 5.42: Validation Results for the Calibrated IRI Model for AC-Over-JPCP Sections 

Bias SSE Se Se/Sy p-value from paired t-test p-value from TOST 
(𝛿𝛿 = 3 in./mile) 

114 7,941 22 1.34 0.21 0.87 
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Figure 5.59: Predicted vs. Measured IRI for the Validation Dataset with Local Factors 

5.6.4.2 Jackknife Approach 

The jackknife sampling approach was also used to calibrate the PMED IRI model. The C1, 

C2, C3, and C4 coefficients of the IRI model were optimized for 18 jackknife samples for AC-

over-AC sections considered in this study. Figures 5.60–5.63 show the distribution of C1, C2, C3, 

and C4 coefficients using the jackknife technique. The figures present the following results: 

• Coefficient C1 had a range of 847–890 for 15 of 18 jackknife samples.  

• The value of coefficient C2 was 0.615–0.623 for 16 jackknife samples. 

• The value of coefficient C3 was 0.0014–0.0021 for 14 jackknife samples. 

• The range of C4 parameter was 0.0995–0.0999 for 16 jackknife samples. 

TOST procedure was repeatedly conducted for a combination of C1, C2, C3, and C4, with 

C1 in the range of 847.0–890.0, C2 in the range of 0.615–0.623, C3 in the range of 0.0014–0.0021, 

and C4 in the range of 0.095–0.099. Results showed that the narrowest equivalence margin for 

measured and predicted IRI varied between 3 inches/mile and 5 inches/mile. These results suggest 

that calibrated IRI predictions for AC over JPCP sections (level of significance, α = 0.05) would 
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likely be equivalent to IRI measured in the field for a margin of 3–5 inches/mile if the C1, C2, C3, 

and C4 coefficients are in the range of 847–890, 0.615–0.623, 0.0014–0.0021, and 0.0995–0.0999, 

respectively. 

 

 
Figure 5.60: Distribution of the C1 Coefficient of the IRI Model using the Jackknife 

Technique 
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Figure 5.61: Distribution of the C2 Coefficient of the IRI Model using the Jackknife 

Technique 
 

 
Figure 5.62: Distribution of the C3 Coefficient of the IRI Model using the Jackknife 

Technique 

 



193 

 
Figure 5.63: Distribution of the C4 Coefficient of the IRI Model using the Jackknife 

Technique 

5.6.4.3 Bootstrap Approach 

The bootstrap resampling approach was implemented to optimize IRI model coefficients. 

One thousand bootstrap samples were considered. Figures 5.64–5.67 show the distribution of C1, 

C2, C3, and C4 coefficients using the bootstrap technique. These figures also show the following: 

• Coefficient C1 had a range of 880–894 for 700 bootstrap samples. 

• The value of coefficient C2 was in the range of 0.612–0.616 for more than 900 

bootstrap samples. 

• The value of coefficient C3 was in the range of 0.0017–0.0021 for 

approximately 800 bootstrap samples. 

• The range of C4 parameter was 0.0989–0.0999 for approximately 800 

bootstrap samples. 

The TOST was repeatedly conducted for a combination of C1, C2, C3, and C4, with C1 in 

the range of 880–894, C2 in the range of 0.612–0.616, C3 in the range of 0.0017–0.0021, and C4 

in the range of 0.0089–0.0099. Results showed that the narrowest equivalence margin for 

measured and predicted IRI varied between 5 inches/mile and 8 inches/mile, suggesting that 
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calibrated IRI predictions (level of significance, α = 0.05) would likely be equivalent to IRI 

measured in the field for a margin of 15 inches/mile if the C1, C2, C3, and C4 coefficients were in 

the range of 40.5–53.5, 0.34–0.41, 0.0074–0.0082, and 0.0989–0.0999, respectively. 

 

 
Figure 5.64: Distribution of the C1 Coefficient of the IRI Model using the Bootstrap 

Technique 

 



195 

 
Figure 5.65: Distribution of the C2 Coefficient of the IRI Model using the Bootstrap 

Technique 

 

 
Figure 5.66: Distribution of the C3 Coefficient of the IRI Model using the Bootstrap 

Technique 
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Figure 5.67: Distribution of the C4 Coefficient of the IRI Model using the Bootstrap 

Technique 

 5.7 Limitation of the Automated Calibration Technique 

Currently, the developed automated technique can only calibrate parameters that do not 

require multiple simulations of the PMED software. For AC pavements, the permanent 

deformation, IRI, bottom-up, and top-down fatigue cracking transfer functions can be calibrated. 

However, β2r and β3r coefficients of the permanent deformation model cannot be calibrated using 

this approach. Similarly, the thermal cracking model cannot be calibrated using this technique. 

One concern regarding application of the automated calibration technique is identifying the 

bounds of model coefficients. A simple optimization technique typically searches for a local 

minimum of the objective function (SSE), while the robust optimization techniques can obtain 

global minimum where the value of the objective function is smaller than that of the local optima 

(Yapo et al., 1998). No study has yet been conducted to identify lower and upper bounds of PMED 

model coefficients beyond realistic predictions. The developed automated techniques in this study 

allow users to select lower and upper bounds for the IRI model. 
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Chapter 6: Results from the Latest Version of AASHTOWare 
Pavement ME Design Software 

 6.1 Introduction 

Since the release of the beta version of the AASHTOWare Pavement ME Design (PMED) 

software in 2002 and the first version for flexible pavements in 2008 (version 1.0), this pavement 

design analysis tool has undergone continuous updates and improvements. Version 2.3 was 

released on July 1, 2016, followed by version 2.5 on July 1, 2018, and version 2.6 on June 26, 

2020. The latest version of the software, version 2.6.2.2, was released September 20, 2022 

(AASHTOWare Pavement ME Design, 2022). 

 6.2 Work Completed 

In 2018, Islam (2019) used AASHTOWare PMED software version 2.5 to analyze 26 

rehabilitation projects. Those same projects were reanalyzed in 2022 in this study using version 

2.6.2.2 of the AASHTOWare PMED software with previous calibration factors for the flexible 

rehabilitation pavements. The new software outputs were analyzed and compared to earlier 

outputs. Differences between predicted distress values of the 2.5 and 2.6.2.2 versions are 

summarized in Tables 6.1, 6.2, and 6.3 for KDOT projects in Districts 1, 2, 3, 4, 5, and 6. A value 

of “0” in the tables represents no difference between the two versions, a positive value represents 

higher predicted distress from the new version of software, and a negative value represents lower 

values. No comparison was made in the “AC top-down fatigue cracking” category. The new 

version of the software changed the predicted distress from feet mile to percent lane area computed 

from transverse or longitudinal cracking, while only longitudinal cracking previously was 

predicted and compared to KDOT measurements. As shown in the tables, most predicted distress 

values remained the same, except for the predicted AC total fatigue cracking, especially the asphalt 

bottom-up fatigue cracking. For both distress types, slightly higher values were obtained with 

software version 2.6.2.2. A valid comparison would require KDOT reevaluation of LCMS images 

to estimate these crackings. 
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Table 6.1: Pavement ME Software Output Differences between Software Version 2.5 and Version 2.6 (KDOT Districts 1 & 2) 

District District 1 District 2 

Distress Type 75-70 KA-
0310-01 

92-44 K-
9364-01 

36-79 KA-
2188-01 

36-101 KA-
0813-01 

70-85 K-
9466-01 

70-85 KA-
2628-01 

81B-59 KA-
2923-01 

Terminal IRI (in/mile) 0 -3.37 0 0.43 -1.96 0 5.36 

Permanent deformation - total 
pavement (in) 0 0.11 -0.07 0 0 0 0 

AC total fatigue cracking: bottom up 
+ reflective (% lane area) 0.01 -0.02 0 1.1 0 0 13.39 

AC total transverse cracking: thermal 
+ reflective (ft/mile) -0.01 223.22 -0.02 129.81 100.22 81.3 254.05 

Permanent deformation - AC only (in) 0 -0.01 -0.01 0 0 0 0 

AC bottom-up fatigue cracking (% 
lane area) 0 0 0 0 0 0 0 

AC thermal cracking (ft/mile) 0 8.04 -1 0 0 0 -0.03 

AC top-down fatigue cracking  
(% lane area)* 0 0 0 0 0 0 0 
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Table 6.2: Pavement ME Software Output Differences between Software Version 2.5 and Version 2.6 (KDOT Districts 3 & 4)  

District District 3 District 4 

Distress Type 
24-71 
KA-

4013-01 

36-12 
KA-

1436-01 

183-74 
KA-1444-

01(1) 

183-74 
KA-1444-

01(2) 

183-82 
KA-2505-

01 

183A-26 
KA-2966-

01 

283-69 
KA-3674-

01 

69-6 
KA-

0657-01 

75-63 
KA-

0811-01 

166-10 
K-7756-

01 

169-1 
KA-

2200-01 

169-2 
KA-

2204-01 

Terminal IRI (in/mile) 0.08 0.9 29.89 0.68 0.65 7.44 0 32.54 5.07 0 -1.54 5.29 

Permanent deformation 
- total pavement (in) 0 0 0 0 0 0 0 0 0 0 0 0 

AC total fatigue 
cracking: bottom up + 
reflective (% lane area) 

0 2.24 2.02 1.67 1.62 18.63 0.43 81.35 12.68 0 0.74 18.13 

AC total transverse 
cracking: thermal + 
reflective (ft/mile) 

-0.84 0 0 0 0 0 0 -0.8 0 0 0 -0.09 

Permanent deformation 
- AC only (in) 0 0 0 0 0 0 0 0 0 0 0 0 

AC bottom-up fatigue 
cracking (% lane area) 0 0 0 0 0 0 0 0 0 0 0.74 17.9 

AC thermal cracking 
(ft/mile) 0 0 0 0 0 0 0 -0.5 0 0 0 -0.01 

AC top-down fatigue 
cracking (% lane area)* 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 6.3: Pavement ME Software Output Differences between Software Version 2.5 and Version 2.6 (KDOT Districts 4, 5 & 6) 

District District 4 District 5 District 6 

Distress Type 69-6 KA-
0657-01 

75-63 
KA-

0811-01 

166-10 
K-7756-

01 

169-1 
KA-

2200-01 

169-2 
KA-

2204-01 

77-8 KA-
2941-01 

77-8 KA-
4192-01 

166-18 
KA-

1460-01 

254-87 
KA-

3496-01 

83-88 K-
8431-01 

160-13 
KA-

1480-01 

Terminal IRI (in/mile) 32.54 5.07 0 -1.54 5.29 7.53 0 0.9 0.2 -0.39 1.11 

Permanent deformation - 
total pavement (in) 0 0 0 0 0 0 0 0 0 0 0 

AC total fatigue cracking: 
bottom up + reflective (% 

lane area) 
81.35 12.68 0 0.74 18.13 18.85 0 0.2 0 2.55 2.73 

AC total transverse 
cracking: thermal + 
reflective (ft/mile) 

-0.8 0 0 0 -0.09 0 0 0 0 0 0.74 

Permanent deformation - 
AC only (in) 0 0 0 0 0 0 0 0 0 0 0 

AC bottom-up fatigue 
cracking (% lane area) 0 0 0 0.74 17.9 0 0 0 1260 0 0 

AC thermal cracking 
(ft/mile) -0.5 0 0 0 -0.01 0 0 0 0 0 0 

AC top-down fatigue 
cracking (% lane area)* 0 0 0 0 0 0 0 0 0 0 0 

 



201 

Chapter 7: Laboratory Cracking Tests on Superpave 
Materials 

 7.1 Material Sources 

This study evaluated one 6.3 mm nominal maximum aggregate size (NMAS) Superpave 

mixture from New York and eight 12.5 mm NMAS Superpave mixtures from Kansas. The mixture 

from New York, Mix1, had a target air void of 3% and no recycled materials; the applicable virgin 

binder was PG 64-22. The eight mixtures from Kansas had a target air void of 3% or 4% and 

varying amounts of recycled asphalt pavement (RAP) and/or recycled asphalt shingles (RAS). 

Kansas Mix4 contained 10% RAP and 5% RAS, and Mix8 contained 40% RAP. The other Kansas 

mixes contained 25% RAP. Kansas Mix3, Mix6, and Mix7 had a target design air void of 3%, 

while Mix2, Mix4, Mix5, Mix8, and Mix9 were designed with 4% air voids. Mix2, Mix5, Mix7, 

and Mix8 had a virgin binder grade of PG 58-28, whereas Mix3, Mix4, Mix6, and Mix9 had a 

virgin asphalt binder grade of PG 70-28. Table 7.1 lists the details of the project materials. 

 
Table 7.1: Project Material Information 

Mix 
ID 

Mix 
Source Project Number Mix 

Designation 
Binder  
Grade 

Recycled 
Material 
Content 

Asphalt 
Content 

(%) 

Target 
Design Air 
Voids (%) 

HMA 
Design Air 
Voids (%) 

1 New York H032315106 NMAS 
6.3mm PG 64-22 0% 6.4 3 2.43 

2 Kansas Various SR-12.5A PG 58-28 25% RAP 5.0 4 4.31 

3 Kansas 83-86 KA 5006-01 SR-12.5A PG 70-28 25% RAP 5.2 3 3.40 

4 Kansas U169-106 KA 
4621-01 SR-12.5A PG 70-28 10% RAP + 

5% RAS 6.3 4 3.95 

5 Kansas 56-106 KA 4716-01 SR-12.5A PG 58-28 25% RAP 5.9 4 4.22 

6 Kansas 83-86 KA 5006-01 SR-12.5A PG 70-28 25% RAP 5.6 3 3.24 

7 Kansas 27 KA 4463-01 SR-12.5A PG 58-28 25% RAP 5.8 3 2.97 

8 Kansas 31 KA 4671-01 SR-12.5A PG 58-28 40% RAP 6.0 4 3.49 

9 Kansas 66-11 KA 4604-01 SR-12.5A PG 70-28 25% RAP 6.2 4 4.29 
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 7.2 Semicircular Bending Test 

This study conducted semicircular bending (SCB) tests according to the AASHTO standard 

test procedure AASHTO TP 124 (2016). The SCB samples were compacted to a minimum of 160 

mm height and a diameter of 150 mm using a Superpave gyratory compactor (SGC). From the 

center of the compacted specimen, two 50 ± 1 mm thick slices were trimmed, and then these two 

round specimens were cut in the middle to obtain identical halves. Then a notch measuring 15 ± 1 

mm deep and 1.5 ± 0.1 mm wide was cut at the middle point of the alignment. For each mixture, 

three semicircular samples were prepared for the SCB test. 

Samples were conditioned at the test temperature of 25 °C for at least two hours and then 

tested in the asphalt mixture performance tester (AMPT). UTS-034 software was used to evaluate 

fracture information of the asphalt mixtures. A three-point bending support frame was used to set 

up the test specimens, as illustrated in Figure 7.1. Specimen alignment was adjusted so that the 

notch was beneath the loading head. The SCB test began once the test temperature was achieved. 

A ramp load was applied to the specimen at a rate of 50 mm/min until the specimen failed. Once 

the peak load was reached, the test stopped automatically. Fracture energy (FE) was obtained 

directly from the software, and the software automatically calculated the flexibility index (FI) by 

adjusting the post-peak slope to match most of the load-displacement curve after the peak point. 

 

 
Figure 7.1: SCB Test Setup 
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For Mix1, Mix2, and Mix3, the specimens were compacted to the standard density 

requirement (93% compacted density) and 94% compacted density to compare the tests results. 

Afterward, t-tests were conducted to determine whether the test results of the mixture with 6% air 

voids differed from the same mixture with 7% air voids. Table 7.2 presents the SCB test results 

of Mix1, Mix2, and Mix3 with 6 and 7 ± 0.5% air voids and the p-values. All the p-values were 

larger than 0.05, indicating no significant differences between the test results from the samples 

with different air voids. Similar results were also obtained from two other tests, the Texas overlay 

test (OT) and the indirect tensile asphalt cracking test (IDEAL-CT). Therefore, the rest of the 

mixtures (Mix4–Mix9) were compacted only to the standard target air voids (approximately 7%) 

for all test specimens. SCB test results for all mixtures are shown in Table 7.3 and illustrated in 

Figures 7.2 and 7.3. 
 

Table 7.2: SCB Test Results and t-test Results of Mix1, Mix2, and Mix3 with Different Air 
Voids 

Mix ID Air Voids 
(%) 

Fracture 
Energy (J/m2) p-value Flexibility 

Index p-value 

1 6.5 2961 0.45 8.7 0.12 7.4 3050 12.4 

2 6.1 1841 0.34 1.5 0.85 7.0 1560 2.2 

3 6.0 2583 0.29 6.2 0.59 7.2 2668 5.9 
 

Table 7.3: SCB Test Results of All Mixtures 

Mix 
ID 

Recycled 
Material 
Content 

Asphalt 
Content 

(%) 

Air 
Voids 
(%) 

Fracture 
Energy 
(J/m2) 

COV (%) Flexibility 
Index 

COV 
(%) 

1 0% 6.4 6.5 2961 18 8.7 11 
7.4 3050 12 12.4 19 

2 25% RAP 5.0 6.1 1841 16 1.5 39 
7.0 1560 14 2.2 27 

3 25% RAP 5.2 6.0 2583 6 6.2 7 
7.2 2668 11 5.9 22 

4 10% RAP + 
5% RAS 6.3 7.0 831 33 0.2 6 

5 25% RAP 5.9 6.9 1250 15 0.3 54 
6 25% RAP 5.6 6.8 2895 5 5.6 81 
7 25% RAP 5.8 6.9 1709 17 2.9 27 
8 40% RAP 6.0 7.4 930 19 0.2 43 
9 25% RAP 6.2 7.0 1380 13 0.3 55 
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Figure 7.2: Fracture Energy and COV from SCB Test Results 

 

 
Figure 7.3: Fracture Energy and COV from SCB Test Results 
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Results in Figure 7.2 showed that the mixture without RAP and RAS (Mix1) had relatively 

higher FE values than other mixtures, while mixtures with 10% RAP, 5% RAS, and 40% RAP 

(Mix4 and Mix8, respectively) had relatively lower FE values. FE values indicate material stiffness: 

a mixture with high FE is expected to have a high stiffness value. The coefficient of variation 

(COV) of FE in the SCB test ranged from 5% to 33%. However, because the FE value alone cannot 

offer a definitive conclusion regarding the cracking performance of Superpave mixtures, the FI 

was developed to determine the cracking potential of asphalt mixtures. Al-Qadi et al. (2015) found 

that FI values of 2.0–6.0 indicate a crack-resistant mixture. Therefore, based on the results in 

Figure 7.3, Mix2, Mix3, Mix6, and Mix7 are acceptable. Mix4, Mix5, Mix8, and Mix9, however, 

had relatively lower FI values, indicating excessive stiffness in the mixtures due to the presence of 

RAS, high RAP content, or a relatively high asphalt content. Mix1 with no recycled materials had 

the highest FI values, indicating that the mixture is soft, and should perform better. The COV 

values of FI varied between 6% and 81%, with the high COV values primarily due to the FI value 

being derived from the shape of the post-peak segment of the load-displacement curve. 

 7.3 Texas Overlay Test 

This study also conducted Texas OTs according to the TxDOT test procedure Tex-248-F 

(2021) Overlay Test. Specimens with diameters measuring 150 mm were compacted to heights of 

115 ± 5 mm, and the specimen sides were cut perpendicular to the top surface to make a width of 

76 ± 0.5 mm. Then the top and bottom of the surfaces were trimmed to produce a sample with a 

thickness of 38 ± 0.5 mm. The density of the trimmed specimen had to be 93 ± 1%. Mix1, Mix2, 

and Mix3 were also compacted to a density of 94 ± 1% to compare to the test results of the 

specimens with densities of 93 ± 1%. 

Three trimmed specimens of each mixture were prepared for testing. The prepared 

specimens were mounted on the base plates, which were mounted and secured to the mounting jig 

with a spacer bar between the plates. A small amount of petroleum jelly was applied along a line 

drawn along the middle of the trimmed specimen, and then a piece of 4-mm wide tape was placed 

over the jelly. Plastic-steel putty was prepared and evenly applied to the specimen, avoiding the 

tape. The specimen was then mounted on the base plates, centered, and aligned with the edges. A 
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weight was put on top of the specimen to make sure the specimen was fully in contact with the 

base plates. Excess putty was removed carefully to ensure no putty spread along the sides. The 

tape and space bar were removed, and the glued specimens were set aside for at least 10 hours to 

allow the putty to cure. Test specimens were put into an environmental chamber at 25 ± 0.5 °C for 

a minimum of one hour before testing. The jig assembly was mounted onto the AMPT machine 

according to the manufacturer’s instructions. Then the glued specimen was slowly inserted into 

the jig, and bolts were tightened following the sequence shown in Figure 7.4. An LVDT was put 

on the back of the jig, and the set screw on the LVDT was adjusted until the Levels screen showed 

a setting between -0.4 and -0.45. The complete test setup is shown in Figure 7.5. 

The UTS-036 software was used to evaluate the fracture properties of the specimen via the 

OT. The test was performed at a constant temperature of 25 ± 0.5 °C. The test specimens were 

repeatedly displaced in tension to a maximum displacement of 0.6 mm. Each cycle consisted of 

five seconds of loading, followed by five seconds of unloading. During the first cycle, the peak 

load was recorded, and initial damage occurred. The test stopped automatically once a 93% 

reduction of the maximum load was achieved or 1,000 cycles were reached. The critical FE and 

crack resistance index were obtained directly from the software. 
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Figure 7.4: Specimen Mounting Pattern  

Source: TxDOT, 2021 

 

 
Figure 7.5: Texas OT Setup 
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Table 7.4 tabulates the OT results for all mixtures, indicating a high variability in the 

number of cycles to failure of each mixture. Similarly, Figure 7.6 shows that Mix1 which had no 

recycled material and 94% density, and Mix4, which contained 10% RAP and 5% RAS, had 

relatively lower critical FE, indicating lower resistance to reflective cracking, while other mixtures 

had relatively higher critical FE. Mix3 with 25% RAP and 94% density and Mix8 with 40% RAP 

showed the highest resistance. For the same density, the COV values varied from 2% to 18%. 

Results of the crack resistance index in Figure 7.7 show that Mix1 (with no RAP and RAS) 

more effectively attenuated the cracking, while Mix4 with 10% RAP and 5% RAS demonstrated 

a negative crack resistance index. Crack propagation was qualified by fitting a power equation to 

the load reduction curve. However, the R2 values obtained from curve fitting were much lower 

than 1.0, indicating the presence of many uncertainties in loading measurements and preventing a 

smooth fit of the power equation (Garcia et al., 2017). For the samples with the same density, the 

range of COV values of the crack resistance index was 3% to 29%. 

 
Table 7.4: OT Results of All Mixtures 

Mix 
ID 

Recycled 
Material 
Content 

Asphalt 
Content 

(%) 

Air 
Voids 
(%) 

Critical 
Fracture 
Energy 

(kN-
mm2) 

COV 
(%) 

Crack 
Resistance 

Index 

COV 
(%) 

No. of 
Cycles 

to 
Failure 

COV 
(%) 

1 0% 6.4 
6.2 1.9 53 101 19 980 3 
7.1 2.7 12 103 4 1000 0 

2 25% RAP 5.0 
6.1 3.1 16 75 6 501 60 
7.0 2.7 10 65 29 283 78 

3 25% RAP 5.2 
6.0 3.5 8 61 24 221 29 
6.9 3.0 6 68 3 545 36 

4 
10% RAP 

+ 5% 
RAS 

6.3 6.8 2.4 2 -38 -107 21 59 

5 25% RAP 5.9 6.9 3.0 18 54 26 139 88 
6 25% RAP 5.6 6.9 3.2 11 78 26 694 68 
7 25% RAP 5.8 7.5 2.7 7 56 3 116 21 
8 40% RAP 6.0 7.0 3.4 2 71 9 349 35 
9 25% RAP 6.2 6.7 3.4 6 74 14 231 24 
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Figure 7.6: OT Results of Critical Fracture Energy and COV 

 

 
Figure 7.7: OT Results of Crack Resistance Index and COV 
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 7.4 Indirect Tensile Asphalt Cracking Test 

IDEAL-CT is a simple, practical (minimum training needed for routine operation), and 

efficient test (completion in less than one minute) for assessing cracking susceptibility of asphalt 

mixtures. This study conducted IDEAL-CTs according to the TxDOT test procedure Tex-250-F 

(2021) IDEAL Cracking Test, in which three test samples were compacted to a height of 62 ± 2 

mm with a target air void of 7 ± 0.5%. Samples were conditioned at the test temperature of 25 °C 

for at least two hours. The load press of a loading frame was calibrated to ensure the deformation 

rate was 50 mm per minute. A Smart-Jig from InstroTek, Inc. and a tablet were used to perform 

the test and collect data, respectively. Figure 7.8 shows the IDEAL-CT setup. The specimen was 

carefully centered on the loading frame, and then the top loading strip was slowly lowered to 

lightly contact the specimen. The load was applied at a rate of 50 mm/min until the specimen 

completely failed. The time, load, and displacement were directly recorded, and the software 

automatically generated the failure energy, cracking tolerance index (CTindex), and indirect tensile 

strength. 

 

 
Figure 7.8: IDEAL-CT Setup 
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The IDEAL-CT results are tabulated in Table 7.5, while Figure 7.9 shows that Mix6 and 

Mix9 (with 25% RAP) had the highest failure energy, indicating relatively higher crack resistance 

for these two mixtures. Comparatively, Mix2 and Mix7 had relatively low failure energy, 

indicating increased susceptibility to cracking. The COV values ranged from 2% to 15% for 

samples with the same compacted density. Figure 7.10 shows that Mix1 (with no RAP or RAS) 

had the highest IDEAL-CT index, while Mix4 (10% RAP and 5% RAS) and Mix8 (40% RAP) 

had relatively lower index values. These results indicate that the CTindex is sensitive to the recycled 

material content. The COV range for the CTindex was 10%–41%. 

 
Table 7.5: IDEAL-CT Results 

Mix 
ID 

Recycled 
Material 
Content 

Asphalt 
Content 

(%) 

Air 
Voids 
(%) 

Failure 
Energy 
(J/m2) 

COV 
(%) 

IDEAL-
CT 

Index 

COV 
(%) 

IDT 
Strength 

(kPa) 

COV 
(%) 

1 0% 6.4 
6.2 9860 3 238 7 828 1 
7.3 10221 8 388 34 690 8 

2 25% RAP 5.0 
6.0 7056 7 43 12 1004 3 
6.9 7135 4 62 41 828 17 

3 25% RAP 5.2 
6.0 9257 2 35 4 1407 1 
6.8 9633 2 45 19 1385 10 

4 10% RAP + 
5% RAS 6.3 6.8 8815 15 11 10 1690 11 

5 25% RAP 5.9 7.0 9694 9 48 12 1241 9 
6 25% RAP 5.6 7.1 10991 3 26 11 1764 6 
7 25% RAP 5.8 7.0 7943 4 29 15 1225 3 
8 40% RAP 6.0 7.1 9115 3 17 22 1618 2 
9 25% RAP 6.2 7.0 11222 9 20 13 1970 4 
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Figure 7.9: IDEAL-CT Results of Failure Energy and COV 

 

 
Figure 7.10: IDEAL-CT Results of IDEAL-CT Index and COV 
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 7.5 Cracking Criterion 

Another objective of this study was to determine if the IDEAL-CT can be used to evaluate 

mixture cracking performance by comparing results from other cracking tests. According to test 

results, the highest COV of the IDEAL-CT index was 41%, which is slightly higher than the 29% 

COV of the cracking resistance index of the OT but significantly less than the COV of the SCB 

test, which reached 81%. A comparison of the COVs of the FE from the three tests showed that 

the highest COV of the IDEAL-CT was 15%, which is lower than the COV values of OT and SCB 

tests (18% and 33%, respectively). Therefore, IDEAL-CT results can be used as cracking-

resistance criterion for mixtures in Kansas. 
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Chapter 8: Performance Model Calibrations for NYSDOT 
Pavements 

 8.1 Enhancing the Performance Models 

This chapter explains the procedure used to calibrate the performance models of the 

AASHTOWare PMED software, version 2.6.2.2, which was released in September 2022. Only the 

models used for the design of asphalt concrete overlays on flexible pavements were calibrated 

because asphalt concrete overlays are not commonly used to resurface distressed rigid pavements. 

The LTPP database was used as the primary source to assemble the required data, and then the 

assembled data were used to calibrate the performance models to eliminate or reduce the bias 

between the predicted and the measured performance data. Calibration was conducted according 

to the AASHTO ME Local Calibration Guide developed under NCHRP Project 1-40B (AASHTO, 

2008). However, local calibration uses only the calibrated coefficients and exponents of the 

distress models, meaning it cannot change the form of the mathematical functions in the 

performance models. 

 8.2 Data Assembly 

The process of assembling the essential data for calibration occurred in two stages. The 

first stage evaluated available data in the NYSDOT’s Pavement Management System (PMS) 

database to determine if sufficient data on asphalt concrete overlays were available to conduct 

local calibration. Because complete calibration data were not available, the NYSDOT PMS data 

were not used. In the second stage, the LTPP was reviewed to ensure availability of the following 

data for new flexible pavements in the northeast (NE) region of the United States: pavement 

structural configuration data, traffic data, climate data, material properties data, distress data, and 

FWD deflection and backcalculated moduli data. Because no complete calibration data were 

available for asphalt overlay on flexible pavement structures in the state of New York, this study 

utilized collected data from the LTPP program on asphalt overlay reinforcement of flexible 

pavement sections from neighboring states. This was done since the states in the NE region of the 

United States have similar climate conditions and use similar pavement structural configurations 

and materials to construct new flexible pavements. The data showed that 19 LTPP-monitored 
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overlay reinforced flexible pavement sections in the NE region of the United States have very 

similar conditions to flexible pavement sections in New York. However, only 19 SPS-5 LTPP 

flexible pavement sections (9 in Maine and 10 in New Jersey) contained the complete required 

data for calibration. 

Locations of the LTPP sections are shown in Figure 8.1. Data availability was evaluated 

for an additional 12 SPS-6 sections in the NE region of the United States, but the data were 

insufficient. Table 8.1 lists the LTPP pavement sections used in this research to calibrate the 

AASHTO PMED models. All sections were built on rural interstate highways: I-95 in Maine and 

I-195 in New Jersey. 

 

 
Figure 8.1: Map Location of LTPP Sections 

8.2.1 Traffic Data Assembly 

Traffic data are necessary to run the AASHTOWare PMED software, version 2.6.2, so that 

traffic loads during the design life can be used for distress prediction. For each selected LTPP site, 

the required traffic data during the base year were extracted from the LTPP traffic data tables. The 

following traffic inputs were utilized in this study: 
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• Average annual daily truck traffic (AADTT), shown in Table 8.2, refers to the 

total volume of truck traffic recorded on a highway segment during an entire 

year, divided by the number of days in the year. 

 
Table 8.1: Selected LTPP Pavement Sections in the NE Region of the United States 

LTTP 
Section 
Type 

State State 
Code 

SHRP 
ID 

AC 
Overlay 

Date 

Date of First 
Maintenance or 
Rehabilitation  

Date of the Last 
Distress Survey 

SPS-5 Maine 23 0502 6/16/1995 8/1/2003 6/15/2003 
SPS-5 Maine 23 0503 6/16/1995 8/1/2003 6/15/2003 
SPS-5 Maine 23 0504 6/16/1995 8/1/2003 6/15/2003 
SPS-5 Maine 23 0505 6/16/1995 8/1/2003 6/15/2003 
SPS-5 Maine 23 0506 6/16/1995 8/1/2003 6/15/2003 
SPS-5 Maine 23 0507 6/16/1995 8/1/2003 6/15/2003 
SPS-5 Maine 23 0508 6/16/1995 8/1/2003 6/15/2003 
SPS-5 Maine 23 0509 6/16/1995 8/1/2003 6/15/2003 
SPS-5 Maine 23 0559 6/1/1995 8/1/2003 6/15/2003 
SPS-5 New Jersey 34 0502 8/18/1992 8/1/1992 4/25/2009 
SPS-5 New Jersey 34 0503 7/27/1992 07/27/1992 4/25/2009 
SPS-5 New Jersey 34 0504 7/28/1992 07/28/1992 4/25/2009 
SPS-5 New Jersey 34 0505 7/20/1992 07/20/1992 4/25/2009 
SPS-5 New Jersey 34 0506 7/20/1992 07/20/1992 4/25/2009 
SPS-5 New Jersey 34 0507 7/20/1992 07/20/1992 4/25/2009 
SPS-5 New Jersey 34 0508 7/20/1992 07/20/1992 4/25/2009 
SPS-5 New Jersey 34 0509 7/20/1992 07/20/1992 4/25/2009 
SPS-5 New Jersey 34 0559 7/20/1992 07/20/1992 4/25/2009 
SPS-5 New Jersey 34 0560 7/20/1992 07/20/1992 4/25/2009 
Sections with Incomplete Data 
SPS-6 Connecticut 9 1803 Insufficient distress data 
SPS-6 Massachusetts 25 1004 Multiple overlays, the first one lasted one year 
SPS-6 New Hampshire 33 1001 Overlay with Fabric Pretreatment 
SPS-6 New York 36 1008 Insufficient distress data 
SPS-6 New York 36 1011 Insufficient distress data 
SPS-6 New York 36 1643 Insufficient distress data 
SPS-6 Pennsylvania 42 1599 Insufficient distress data 
SPS-6 Pennsylvania 42 1605 Insufficient distress data 
SPS-6 Pennsylvania 42 1608 Crack sealing done only 2.5 years after overlay  
SPS-6 Pennsylvania 42 1618 Insufficient distress data 
SPS-6 Vermont 50 1681 Insufficient distress data 
SPS-6 Vermont 50 1683 Insufficient distress data 
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• Vehicle class distribution (VCD) represents the percentage of each truck class 

(Class 4 to Class 13) in the total number of trucks. The FHWA has classified 

vehicles into 13 classes, nine of which are truck classes, and one is bus, as 

shown previously in Figure 3.3. VCD data are given in Table 8.3. 

• Monthly adjustment factors (MAFs) represent the proportion of annual truck 

traffic for a given truck class in a specific month. The MAF for a vehicle class 

for a specific month is computed by dividing the monthly truck traffic from 

that class by the total truck traffic for the entire year (AASHTO, 2008). 

Because the LTPP database has no MAF data for these sections, the default 

value of 1.0 was used for the MAF values for all months.  

• Number of axles per truck indicates the average number of axles for each 

truck class and each axle type (single, tandem, tridem and quad). The number 

of axles per truck was extracted from the LTPP database, as shown in Table 

8.4. 

• Growth rate and function indicates the annual rate of truck traffic growth over 

time in the exponential growth model. The extracted growth rate for each of 

the 18 LTPP-selected sections was computed from the recorded truck traffic 

(AADTT) during the entire monitoring period of this study. The truck volume 

data used to calculate the compound (exponential) growth rate are given in 

Table 8.2, with the value for the base year in bold characters. In the table, the 

same compound (exponential) growth rate was used for all vehicle classes.  

• Axle load spectra refers to the axle load distribution for each axle type for 

each month of the year and each vehicle class. It is the percentage of the total 

axle application within specified load intervals with respect to the axle type 

and vehicle class. Although axle load spectra data were extracted from the 

LTPP database for this study, the very large data tables are not included in this 

report for the sake of brevity. 
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The following additional traffic inputs required by the AASHTOWare PMED software 

were not available in the LTPP database, so the default values suggested by the software for Level 

3 design were used instead: 

• Hourly adjustment factors refer to the ratio of the truck traffic in a given hour 

of the day divided by the total daily truck traffic. To reduce the computation 

time, hourly adjustment factors are not used to design flexible pavements. 

• Traffic capacity is an optional setting that puts a cap on forecasted traffic 

volume based on the PMED’s internal capacity calculations, which use the 

models included in the Highway Capacity Manual (Transportation Research 

Board, 2010). 

 
Table 8.2: Annual Average Daily Truck Traffic 

Year Maine sections (23-) New Jersey sections (34-) 
1992  1,278 
1993  1,112 
1994  854 
1995 600 859 
1996 614 678 
1997 627 1,343 
1998 639 1,173 
1999 574 1,251 
2000 552 1,267 
2001 656 1,397 
2002 625 1,454 
2003 630 1,528 
2004 567 1,560 
2005  1,435 
2006  1,323 
2007  1,303 
2008  1,209 
2009  2,158 
2010  2,070 

Exponential Growth Rate (%) 0.171% 1.245% 
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Table 8.3: Vehicle Class Distribution 
FHWA VEHICLE CLASS MAINE NEW JERSEY 
4 (Buses) 2.1 2.87 
5 (Two axle, 6-tire, Single-unit truck) 23.64 30.48 
6 (Three axle, Single-unit truck) 3.83 12.9 
7 (Four or more axle, Single-unit truck) 0 4.68 
8 (Four or less axle, One-trailer truck) 4.22 8.44 
9 (Five axle, One-trailer truck) 51.3 38.79 
10 (Six or more axle, One-trailer truck) 14.41 0.91 
11 (Five or less axle, Multi-trailer truck) 0.5 0.82 
12 (Six axle, Multi-trailer truck) 0 0.11 
13 (Seven or more axle, Multi-trailer truck) 0 0 

 

• Axle configuration defines the average axle width, axle spacing, dual tire 

spacing, and tire inflation pressure. 

• Lateral wander includes the mean wheel location, standard deviation of traffic 

wander, and design lane width. 

• Wheel base includes the average spacing of short, medium, and long axles, as 

well as the percentage of trucks with this axle spacing 
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Table 8.4: Number of Axles per Truck 
State FHWA Vehicle Class Single Tandem Tridem Quad 
Maine 4 (Buses) 1.47 0.54 0 0 
Maine 5 (Two axle, 6-tire, Single-unit truck) 2.16 0.02 0 0 
Maine 6 (Three axle, Single-unit truck) 1 1 0 0 
Maine 7 (Four or more axle, Single-unit truck) 1.07 0.1 0.94 0.06 
Maine 8 (Four or less axle, One-trailer truck) 2.47 0.59 0 0 
Maine 9 (Five axle, One-trailer truck) 1.41 1.8 0 0 
Maine 10 (Six or more axle, One-trailer truck) 1 1.11 0.89 0 
Maine 11 (Five or less axle, Multi-trailer truck) 4.99 0.01 0 0 
Maine 12 (Six axle, Multi-trailer truck) 3.73 1.02 0.46 0 
Maine 13 (Seven or more axle, Multi-trailer truck) 1.57 1.8 0.62 0.52 
New Jersey 4 (Buses) 1.45 0.55 0 0 
New Jersey 5 (Two axle, 6-tire, Single-unit truck) 2.07 0 0 0 
New Jersey 6 (Three axle, Single-unit truck) 1 1 0 0 
New Jersey 7 (Four or more axle, Single-unit truck) 1 0 1 0 
New Jersey 8 (Four or less axle, One-trailer truck) 2.12 0.9 0 0 
New Jersey 9 (Five axle, One-trailer truck) 1.19 1.91 0 0 
New Jersey 10 (Six or more axle, One-trailer truck) 1.02 1.1 0.87 0.04 
New Jersey 11 (Five or less axle, Multi-trailer truck) 5 0.01 0 0 
New Jersey 12 (Six axle, Multi-trailer truck) 4 1 0 0 
New Jersey 13 (Seven or more axle, Multi-trailer truck) 1.21 0.49 1.22 0.3 

8.2.2 Structural Layers and Materials Properties Data Assembly 

Because the calibration of performance models relies on the AASHTOWare PMED-

selected LTPP pavement sections, the structural configuration and material properties of the LTPP 

sections must be used in the software runs. Therefore, this study extracted the required inputs to 

be used in design problems for the sections listed in Table 8.1. Inputs that were not available in 

the LTPP database, such as indirect tensile strength, were replaced with AASHTOWare default 

values. The following data were extracted from the LTPP database: 

• Layer thickness: The database of the selected LTPP sites contains adequate 

information regarding the number of layers and material type and thicknesses. 

Therefore, that information was extracted to create AASHTOWare design 

problems for the selected LTPP sites. The extracted structural data are 

tabulated in Tables 8.5–8.8. If milling occurred before the overlay 
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construction, the layer thickness for the existing surface layer would be that 

remained after milling. 

• Unbounded layers properties: Because selected LTPP sites have limited data 

for the unbounded layers, Level 3 design inputs were used to cover the 

missing data. Extracted data for the base/subbase layers are listed in Tables 

8.5 and 8.6. Resilient moduli values backcalculated from the last set of FWD 

deflection tests before the AC overlay construction were used. The 

backcalculated values were multiplied by the correction factors recommended 

by the AASHTOWare Pavement ME Manual of Practice (AASHTO, 2008), 

as shown in Table 8.9. The correction factors were 0.62 for granular base and 

subbase layers and 0.35 for the subgrade layer. If the corrected moduli values 

were smaller than the minimum values accepted by the software for the 

AASHTO classification of the soil (AASHTO, 2008), the minimum accepted 

values were used as input values for the resilient modulus. 

• HMA layer properties: Tables 8.7 and 8.8 detail HMA layer inputs available 

in the LTPP database. These inputs include air voids (AV) in the total mix by 

volume (%). The minimum value of 1.0% accepted by the software was used 

if the reported air voids were below 1.0%. Additional inputs included in the 

tables are Gmb, the bulk-specific gravity or unit weight of the mix (pcf); Pbe, 

effective binder content in the total mix by volume (%); and Pb, or binder 

content in the total mix by weight (%). The tables also identify voids in the 

mineral aggregates (VMA) by volume (%) and voids filled with asphalt 

(VFA) by volume (%). Both tables also present data for the gradation of 

aggregates in the mix, but only values for the percent passing for four sieve 

sizes are required by the AASHTOWare PMED software. 

• Penetration/viscosity grade for asphalt binders: For the 19 sections selected 

for calibration, the LTPP database contains only results of viscosity or 

penetration tests on asphalt extracted from the build test section several years 

after overlay construction, meaning no test results of grades on the virgin 
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binder are available. A literature investigation found that AC-10 viscosity 

grade binders were commonly used in Maine, and AC-20 viscosity grade 

binders were used in New Jersey before the implementation of the Superpave 

binder grading system in the late 1990s. Therefore, these viscosity grades 

were assigned to the binders, irrespective of their mix location in the 

pavement structure. 

• Creep compliance of HMA: The LTPP database contains creep compliance 

test results on asphalt concrete used in the construction of the 19 sections. The 

results are for tests conducted at three temperatures: 14 °F, 42 °F, and 77 °F (-

10 °C, 5 °C, and 25 °C). However, data for only 14 °F (-10 °C) were accepted 

as input in the design software. Therefore, Level 2 data input was selected, 

and only these creep compliance values were used as data input. Required 

creep compliance data were only for the mix used at the top of the overlay 

(Table 8.10). 

Recommended default values and Level 3 inputs were used for all other material properties 

data. The LTTPP database contains dynamic modulus (E*) data only for the Maine sections, but 

the values were predicted and not measured. The database also contains indirect tensile strength 

values only at 77 °F (25 °C) and not at temperatures below freezing, as required by the design 

software. The last FWD tests before the asphalt overlay were performed on the Maine sections on 

April 24–26, 1995. The last FWD tests before the asphalt overlay were performed on the New 

Jersey sections on March 30–April 2, 1992. 
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Table 8.5: Properties of Unbound Foundation Layers – Maine Sections 

Section Layer 
No Description <3" <2" <1.5" <1" <3.4" <1/2" <3/8" <#4 <#10 <#40 <#80 <#200 

23-0502 1 Subgrade 94.7 92.0 90.7 85.3 81.0 74.0 71.0 63.3 53.3 31.7 19.3 9.3 
23-0502 2 Subbase 89 76.3 68 57 50.7 44.3 42 37 33 20 12 5.7 
23-0502 3 Base 100 100 100 83.7 71 57.7 52.7 43.3 34 11 5.3 3.5 
23-0503 1 Subgrade 100 97.0 95.0 88.0 81.0 74.0 71.0 59.0 52.0 29.7 18.0 8.0 
23-0503 2 Subbase 100 94 86.5 78.5 73.5 67.5 61.5 51.5 40.5 19.5 12.5 7.8 
23-0503 3 Base 100 100 97 87 59 70 66 58 50 28 16 6.6 
23-0504 1 Subgrade 100 97.0 95.0 88.0 80.0 71.0 66.0 57.0 48.0 29.0 17.0 8.0 
23-0504 2 Subbase 100 100 100 90 80 68 62 52 38 17 11 7.9 
23-0504 3 Base 100 97 96 82 75 66 61 52 42 25 15 7.2 
23-0505 1 Subgrade 100 97.0 95.0 88.0 81.0 74.0 71.0 59.0 52.0 29.7 18.0 8.0 
23-0505 2 Subbase 100 94 86.5 78.5 73.5 67.5 61.5 51.5 40.5 19.5 12.5 7.8 
23-0505 3 Base 100 100 97 83.7 75 66 61 52 39 15.7 9.3 5.4 
23-0506 1 Subgrade 100 97.0 89.0 83.0 77.0 70.0 66.0 59.0 52.0 31.0 18.0 7.3 
23-0506 2 Subbase 100 93 86 78 74 70 68 64 60 38 23 9.3 
23-0506 3 Base 100 100 97 89 81 70 65 52 39 14 8 5.4 
23-0507 1 Subgrade 100 100.0 100.0 96.0 92.0 86.0 83.0 74.0 60.0 27.0 16.0 7.2 
23-0507 2 Subbase 100 100 100 90 79 67 61 48 38 18 12 7.6 
23-0507 3 Base 100 97 95 90 87 84 82 78 69 26 13 3.8 
23-0508 1 Subgrade 100 100.0 100.0 91.0 85.7 75.3 71.0 57.7 47.3 29.7 20.0 12.0 
23-0508 2 Subbase 88 82.7 79 67 63.3 58.7 57 51 43 22.7 14.7 7.3 
23-0508 3 Base 97.3 95.7 94.3 83.7 76 65.7 61 49.7 38.3 15.7 9.3 5.4 
23-0509 1 Subgrade 100 97.0 87.0 76.0 69.0 59.0 54.0 44.0 36.0 24.0 14.0 9.9 
23-0509 2 Subbase 100 94 86.5 78.5 73.5 67.5 61.5 51.5 40.5 19.5 12.5 7.8 
23-0509 3 Base 100 100 97 83.7 75 66 61 52 39 15.7 9.3 5.4 
23-0559 1 Subgrade 100 97.0 87.0 76.0 69.0 59.0 54.0 44.0 36.0 24.0 14.0 9.9 
23-0559 2 Subbase 100 95 87 79 73 68 65 58 46 19 13 8.7 
23-0559 3 Base 100 100 100 81 65 51 45 33 22 9 6 4.4 
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Table 8.6: Properties of Unbound Foundation Layers – New Jersey Sections 

Section Layer  
No Description <3" <2" <1.5" <1" <3.4" <1/2" <3/8" <#4 <#10 <#40 <#80 <#200 

34-0502 1 Subgrade 100.0 100.0 98.5 96.0 95.0 94.5 94.0 91.5 88.0 76.5 44.0 21.5 
34-0502 2 Subbase 100.0 100.0 97.0 93.0 89.0 82.0 79.0 71.0 61.0 30.0 16.0 9.9 
34-0502 3 Base 100.0 100.0 99.0 91.0 81.0 74.0 71.0 64.0 55.0 27.0 15.0 11.1 
34-0503 1 Subgrade 100.0 100.0 100.0 99.0 99.0 98.0 98.0 96.0 92.0 77.0 43.0 33.8 
34-0503 2 Subbase 100.0 100.0 96.0 86.0 81.0 77.0 75.0 71.0 62.0 29.0 11.0 7.8 
34-0503 4 Base 100.0 100.0 95.0 86.0 81.0 76.0 74.0 70.0 62.0 28.0 11.0 7.8 
34-0504 1 Subgrade 100.0 100.0 99.2 97.5 97.0 96.2 95.5 93.8 90.0 75.2 43.5 25.8 
34-0504 2 Subbase 100.0 100.0 98.5 91.5 88.0 84.5 82.5 78.0 70.5 43.5 16.0 10.2 
34-0504 4 Base 100.0 100.0 96.0 84.0 79.0 74.0 71.0 63.0 53.0 26.0 10.0 7.0 
34-0505 1 Subgrade 100.0 100.0 100.0 100.0 99.0 98.0 97.0 96.0 93.0 74.0 44.0 30.1 
34-0505 2 Subbase 100.0 100.0 98.0 84.0 79.0 74.0 71.0 64.0 53.0 20.0 8.0 6.3 
34-0505 4 Base 100.0 100.0 98.0 84.0 79.0 74.0 71.0 63.0 53.0 20.0 8.0 6.3 
34-0506 1 Subgrade 100.0 100.0 97.6 95.4 91.8 89.6 87.8 83.6 74.8 41.8 15.6 7.0 
34-0506 2 Base 100.0 100.0 96.0 84.0 79.0 74.0 71.0 63.0 53.0 26.0 10.0 7.0 
34-0507 1 Subgrade 100.0 100.0 99.2 97.5 97.0 96.2 95.5 93.8 90.0 75.2 43.5 25.8 
34-0507 2 Subbase 100.0 100.0 99.0 97.0 95.0 92.0 90.0 85.0 79.0 58.0 21.0 12.5 
34-0507 3 Base 100.0 100.0 96.0 78.0 73.0 68.0 65.0 59.0 50.0 24.0 9.0 7.0 
34-0508 1 Subgrade 100.0 100.0 99.2 97.5 97.0 96.2 95.5 93.8 90.0 75.2 43.5 25.8 
34-0508 2 Subbase 100.0 100.0 100.0 100.0 98.0 96.0 94.0 91.0 86.0 66.0 33.0 24.1 
34-0508 4 Base 100.0 100.0 94.0 73.0 64.0 60.0 58.0 54.0 49.0 26.0 10.0 6.8 
34-0509 1 Subgrade 100.0 100.0 99.2 97.5 97.0 96.2 95.5 93.8 90.0 75.2 43.5 25.8 
34-0509 2 Subbase 100.0 100.0 98.5 91.5 88.0 84.5 82.5 78.0 70.5 43.5 16.0 10.2 
34-0509 4 Base 100.0 100.0 96.0 84.0 79.0 74.0 71.0 63.0 53.0 26.0 10.0 7.0 
34-0559 1 Subgrade 100.0 100.0 99.2 97.5 97.0 96.2 95.5 93.8 90.0 75.2 43.5 25.8 
34-0559 2 Subbase 100.0 100.0 98.5 91.5 88.0 84.5 82.5 78.0 70.5 43.5 16.0 10.2 
34-0559 3 Base 100.0 100.0 96.0 84.0 79.0 74.0 71.0 63.0 53.0 26.0 10.0 7.0 
34-0560 1 Subgrade 100.0 100.0 98.0 93.0 91.0 89.0 88.0 83.0 76.0 49.0 26.0 18.0 
34-0560 2 Subbase 100.0 100.0 98.0 89.0 87.0 83.0 80.0 73.0 64.0 28.0 15.0 10.4 
34-0560 3 Base 100.0 100.0 96.0 84.0 79.0 74.0 71.0 63.0 53.0 26.0 10.0 7.0 
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Table 8.7: Asphalt Concrete Layer Information – Maine Sections 

Section Layer 
No Description Thickness 

(in.) 
AV 
(%) 

Pbe 
(%) 

Pb 
(%) 

Gmb 
(pcf) 

VMA 
(%) 

VFA 
(%) 

<3/4" 
(%) 

<3/8" 
(%) 

<#4 
(%) 

<#200 
(%) 

23-0502 6 Original Surface 

 

9.0 0.9 12.4 5.0 152.2 13.5 92.0 69.3 42.3 34.7 4.7 
23-0502 8 Overlay 3.6 2.2 12.1 5.0 150.6 14.4 84.0 98.3 81.0 48.8 5.0 
23-0503 6 Original Surface 

 

9.2 1.9 13.8 6.6 151.9 15.2 90.9 97.3 76.6 55.9 5.7 
23-0503 8 AC Layer Below 

 

3.5 1.6 11.5 4.9 153.0 13.0 88.2 98.0 50.0 37.0 6.0 
23-0503 9 Overlay 2.0 1.1 13.1 5.7 152.0 14.3 91.8 100.0 73.0 45.0 6.2 
23-0504 6 Original Surface 

 

8.6 1.2 12.3 5.1 152.6 13.4 91.9 97.3 76.6 55.9 5.7 
23-0504 8 AC Layer Below 

 

3.7 1.3 11.2 5.2 153.8 12.8 87.7 100 66.0 47.0 5.7 
23-0504 9 Overlay 2.0 1.0 13.0 5.8 152.6 14.1 91.9 100 80.0 52.0 6.7 
23-0505 6 Original Surface 

 

8.4 1.7 9.7 5.1 151.6 14.0 69.5 97.3 76.6 55.9 5.7 
23-0505 8 Overlay 2.7 3.7 11.6 4.9 149.4 15.1 76.7 98.3 76.8 48.4 5.3 
23-0506 6 Original Surface 

 

7.4 1.0 11.5 4.7 153.3 12.6 91.0 98.0 51.0 37.0 5.2 
23-0506 8 AC Layer Below 

 

2.0 0.8 11.7 4.9 153.6 12.7 92.4 100 61.0 44.0 6.1 
23-0506 9 Overlay 2.1 2.6 11.5 5.3 150.1 15.0 76.9 100 74.0 46.0 6.5 
23-0507 6 Original Surface 

 

6.9 1.2 9.5 5.1 152.4 13.5 70.3 97.3 76.6 55.9 5.7 
23-0507 8 AC Layer Below 

 

2.3 1.2 11.5 4.9 153.6 12.6 91.2 100 61.0 45.0 6.9 
23-0507 9 AC Layer Below 

 

3.2 1.8 10.1 3.9 153.5 11.8 86.0 96.5 61.5 44.0 6.8 
23-0507 10 Overlay 2.1 2.7 12.0 5.3 150.2 14.9 80.7 100 80.0 52.0 6.9 
23-0508 6 Original Surface 

 

7.8 1.1 12.2 5.1 152.2 13.6 90.0 98.3 57.0 41.0 5.0 
23-0508 8 AC Layer Below 

 

2.0 0.4 11.7 4.9 154.6 12.1 96.5 100 49.0 38.0 6.6 
23-0508 9 AC Layer Below 

 

2.9 1.0 11.4 4.8 153.8 12.5 91.0 98.5 48.0 36.5 6.2 
23-0508 10 Overlay 1.9 1.4 12.8 5.9 152.1 14.4 88.8 100 73.0 48.0 6.5 
23-0509 6 Original Surface 

 

6.9 1.5 9.6 5.1 151.9 13.8 69.8 97.3 76.6 55.9 5.7 
23-0509 8 AC Layer Below 

 

1.7 2.0 10.3 4.8 152.9 13.0 79.1 100 48.0 36.0 6.3 
23-0509 9 Overlay 2.1 1.5 12.8 5.6 151.3 14.6 87.8 100 70.0 44.0 6.2 
23-0559 6 Original Surface 

 

8.8 1.0 12.3 5.1 152.1 13.7 89.8 97.3 76.6 55.9 5.7 
23-0559 8 AC Layer Below 

 

1.3 3.6 12.5 5.7 148.6 16.2 76.9 100 94.0 72.0 8.3 
23-0559 9 Overlay 1.8 2.3 11.5 4.9 150.8 14.3 80.5 98.3 76.8 48.4 5.3 
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Table 8.8: Asphalt Concrete Layer Information – New Jersey Sections 
Section Layer 

No 
Description Thickness 

(in.) 
AV 
(%)  

 Pbe 

(%)  
Pb 

(%) 
 Gmb 
(pcf)  

VMA 
(%)  

VFA 
(%)  

<3/4" 
(%)  

<3/8" 
(%)  

<#4 
(%)  

<#200 
(%) 

34-0502 5 Original Surface Layer 8.7 5.4 12.5 5.7 156.1 12.0 56.6 88.0 75.0 60.0 7.6 
34-0502 6 Overlay 1.7 4.3 10.2 4.6 157.6 10.1 54.7 97.3 76.1 54.2 5.8 
34-0503 6 Original Surface Layer 9.2 5.4 10.1 4.5 160.7 8.2 46.5 97.3 69.6 49.3 5.8 
34-0503 7 AC Layer Below Overlay 3.0 4.3 11.4 5.1 160.0 9.2 55.6 97.3 76.6 55.9 5.7 
34-0503 8 Overlay 1.7 4.0 9.5 4.3 158.4 9.3 59.9 98.7 82.0 53.3 6.9 
34-0504 6 Original Surface Layer 8.7 8.1 9.7 4.5 154.6 11.7 41.2 97.3 69.6 49.3 5.8 
34-0504 7 AC Layer Below Overlay 2.9 1.4 11.0 4.8 164.4 6.4 72.8 95.0 71.7 54.7 5.9 
34-0504 8 Overlay 1.8 3.3 12.4 5.6 157.5 11.1 60.3 98.2 77.8 50.3 5.6 
34-0505 6 Original Surface Layer 9.1 5.2 10.0 4.5 158.4 9.5 38.1 97.3 69.6 49.3 5.8 
34-0505 7 Overlay 1.8 3.5 12.4 5.6 158.7 10.4 66.4 98.2 77.8 50.3 5.6 
34-0506 3 Original Surface Layer 7.4 5.7 11.1 5.0 158.7 9.8 41.4 96.2 74.4 50.2 5.3 
34-0506 5 AC Layer Below Overlay 2.0 2.3 10.0 4.4 162.5 7.1 60.8 97.7 78.9 56.3 5.9 
34-0506 6 Overlay 1.9 3.1 10.0 4.5 159.2 9.1 64.7 98.2 77.8 50.3 5.6 
34-0507 4 Original Surface Layer 7.3 4.9 10.3 4.6 160.7 8.3 35.4 92.0 63.0 50.0 8.9 
34-0507 6 AC Layer Below Overlay 2.6 3.9 9.8 4.3 163.2 6.6 37.7 91.3 59.0 45.0 6.4 
34-0507 7 AC Layer Below Overlay 2.9 2.1 10.1 4.4 163.7 6.4 67.8 97.7 78.9 56.3 5.9 
34-0507 8 Overlay 1.9 3.5 11.4 5.1 159.0 9.7 64.3 99.3 87.3 60.7 6.5 
34-0508 5 Original Surface Layer 6.7 3.8 9.5 4.2 161.9 7.3 33.7 91.0 58.0 42.0 7.6 
34-0508 7 AC Layer Below Overlay 2.5 3.2 9.0 4.0 160.9 7.7 52.3 91.0 66.0 49.3 7.3 
34-0508 8 AC Layer Below Overlay 3.3 3.4 9.5 4.2 161.2 7.7 54.0 93.5 69.2 51.5 6.8 
34-0508 9 Overlay 1.8 3.8 9.7 4.4 157.7 9.8 53.7 97.3 76.1 54.2 5.8 
34-0509 5 Original Surface Layer 7.2 4.3 11.3 5.0 161.0 8.5 40.4 96.2 74.4 50.2 5.3 
34-0509 7 AC Layer Below Overlay 2.6 3.8 11.5 5.1 160.8 8.8 55.5 97.3 76.6 55.9 5.7 
34-0509 8 Overlay 1.8 2.9 11.0 4.9 160.1 9.0 63.6 97.3 76.1 54.2 5.8 
34-0559 4 Original Surface Layer 6.6 5.8 10.2 5.0 146.1 17.0 65.8 96.2 74.4 50.2 5.3 
34-0559 6 AC Layer Below Overlay 2.5 3.0 12.0 5.3 161.7 8.4 60.5 97.7 78.9 56.3 5.9 
34-0559 7 Overlay 1.9 3.4 10.0 4.5 159.4 9.0 62.9 97.7 82.0 56.3 6.4 
34-0560 4 Original Surface Layer 6.6 10.1 10.6 5.0 151.3 14.0 28.5 96.2 74.4 50.2 5.3 
34-0560 6 Overlay 2.3 4.3 11.8 5.3 159.2 9.8 50.3 97.7 78.9 56.3 5.9 
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Table 8.9: Backcalculated Layer Modui (ksi) 

Section 

LTPP 
Asphalt 
E 
(ksi) 

LTPP 
Asphalt 
Temperature 
(°F) 

LTPP 
Mr 
Base 
(ksi) 

LTPP 
Mr 
subbase 
(ksi) 

LTPP 
Mr 
subgrade 
(ksi) 

Corrected 
Mr 
base  
(ksi) 

Corrected 
Mr 
subbase 
(ksi) 

Corrected 
Mr 
subgrade 
(ksi) 

23-0502 583.3 73.4 58.1 16.9 36.6 36.0 10.5 12.8 
23-0503 1,538.9 46.8 30.2 52.7 34.3 18.7 32.7 12.0 
23-0504 1,544.9 51.1 36.2 44.1 37.8 22.4 27.3 13.2 
23-0505 1,172.9 60.3 57.7 29.3 38.7 35.8 18.2 13.5 
23-0506 804.4 66.7 32.7 21.4 34.0 20.3 13.3 11.9 
23-0507 939.4 74.5 40.9 39.8 43.3 25.4 24.7 15.2 
23-0508 606.7 77.0 52.3 16.1 41.6 32.4 10.0 14.6 
23-0509 1,249.0 48.9 40 35.6 40.6 24.8 22.1 14.2 
23-0559 959.8 57.9 44.8 37.9 33.7 27.8 23.5 11.8 
34-0502 958.8 55.0 20.3 17.8 22.9 12.6 11.0 8.0 
34-0503 439.6 50.0 26.6 22.4 35.6 16.5 13.9 12.5 
34-0504 1,168.4 64.0 12.7 57.2 37.7 7.9* 35.5 13.2 
34-0505 2,156.2 46.0 38.1 15.1 41.0 23.6 9.4* 14.4 
34-0506 612.6 69.1 14.1 60.2 46.4 8.7* 37.3 16.2 
34-0507 1,133.0 55.0 29.9 24.4 36.7 18.5 15.1 12.8 
34-0508 1,293.5 57.9 27.8 57.6 12.1 17.2 35.7 4.2 
34-0509 946.4 66.0 14.4 55.5 47.4 8.9* 34.4 16.6 
34-0559 983.5 59.0 30.4 22.4 43.4 18.8 13.9 15.2 
34-0560 1,386.5 54.0 21.2 14.6 46.4 13.1 9.1* 16.2 

* A minimum accepted value of 10.0 ksi was used as input 
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Table 8.10: Creep Compliance at 14 °F (-10 °C) (1/psi) 

ID At 1.0 
second 

At 2 
seconds 

At 5 
seconds 

At 10 
seconds 

At 20 
seconds 

At 50 
seconds 

At 100 
seconds 

23-0503 4.482E-07 5.171E-07 6.481E-07 7.653E-07 9.170E-07 1.207E-06 1.606E-06 
23-0504 5.309E-07 6.205E-07 7.653E-07 9.101E-07 1.145E-06 1.586E-06 2.144E-06 
23-0506 2.275E-07 2.551E-07 2.896E-07 3.172E-07 3.516E-07 4.137E-07 4.826E-07 
23-0507 4.688E-07 5.585E-07 7.033E-07 8.412E-07 1.062E-06 1.455E-06 1.882E-06 
23-0508 4.482E-07 5.171E-07 6.412E-07 7.515E-07 9.032E-07 1.186E-06 1.531E-06 
23-0559 5.171E-07 5.998E-07 7.653E-07 9.446E-07 1.158E-06 1.606E-06 2.144E-06 
34-0502 2.827E-07 3.172E-07 3.447E-07 3.654E-07 3.999E-07 4.482E-07 5.171E-07 
34-0503 2.137E-07 2.413E-07 2.620E-07 2.965E-07 3.309E-07 3.930E-07 4.619E-07 
34-0504 2.551E-07 2.827E-07 3.241E-07 3.585E-07 3.999E-07 4.757E-07 5.585E-07 
34-0507 2.068E-07 2.551E-07 2.827E-07 3.103E-07 3.378E-07 3.930E-07 4.619E-07 
34-0508 2.482E-07 3.034E-07 3.378E-07 3.585E-07 3.930E-07 4.482E-07 5.171E-07 
34-0509 2.482E-07 2.827E-07 3.172E-07 3.447E-07 3.792E-07 4.482E-07 5.378E-07 
34-0559 2.206E-07 2.965E-07 3.378E-07 3.723E-07 4.206E-07 5.102E-07 6.136E-07 
34-0560 1.655E-07 2.413E-07 2.620E-07 2.827E-07 3.103E-07 3.585E-07 4.068E-07 

8.2.3 Selection of the Climate Stations 

Climate data can be imported easily from the NASA’s MERRA climate data based on the 

geographic location of the LTPP sites. This study imported the climate data for the Maine and New 

Jersey sections using a map feature in the AASHTOWare PMED software, version 2.6.2.2. 

However, the LTPP database lacks input for the depth-to-water table, so a water table depth of 10 

ft was assumed for all pavement sections. 

8.2.4 Pavement Construction Information 

Construction activities performed on each of the 19 LTPP sections were extracted from the 

LTPP database (Table 8.11). All Maine sections were assigned on November 1, 1992, and 

unassigned on August 9, 2004. All New Jersey sections were assigned on November 1, 1991, and 

unassigned on April 1, 2010. Asphalt shoulder restoration was done on all sections when the 

overlays were constructed. The period of research interest for calibration spanned from the 

construction of the asphalt overlay and the first repair activity. The first repair activity for the 

Maine sections was crack sealing. No repair activities were done on the New Jersey sections until 
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these sections were decommissioned, except for section 34-0502 on which pothole patching was 

done in June 2001, almost nine years after construction of the overlay. 

 
Table 8.11: Construction Activities 

Section Date Construction Activity 

23-0502 06/16/1995 Hot-Mix Recycled Asphalt Concrete Overlay 
23-0502 08/01/2003 Crack Sealing 
23-0503 06/16/1995 Hot-Mix Recycled Asphalt Concrete Overlay 
23-0503 08/01/2003 Crack Sealing 
23-0504 06/16/1995 Asphalt Concrete Overlay 
23-0504 08/01/2003 Crack Sealing 
23-0505 06/16/1995 Asphalt Concrete Overlay 
23-0505 08/01/2003 Crack Sealing 
23-0506 06/16/1995 Mill Off AC and Overlay with AC 
23-0506 08/01/2003 Crack Sealing 
23-0507 06/16/1995 Mill Off AC and Overlay with AC 
23-0507 08/01/2003 Crack Sealing 
23-0508 06/16/1995 Mill Existing Pavement and Overlay with Hot-Mix Recycled AC 
23-0508 08/01/2003 Crack Sealing 
23-0509 06/16/1995 Mill Existing Pavement and Overlay with Hot-Mix Recycled AC 
23-0509 08/01/2003 Crack Sealing 
23-0559 06/16/1995 Asphalt Concrete Overlay 
23-0559 08/01/2003 Crack Sealing 
34-0502 08/18/1992 Hot-Mix Recycled Asphalt Concrete Overlay 
34-0502 06/01/2001 Patch Potholes - Hand Spread, Compacted with Truck 
34-0502 06/01/2003 Manual Spot Patch (hand spreading and compacting with roller) 
34-0503 07/27/1992 Hot-Mix Recycled Asphalt Concrete Overlay 
34-0504 07/28/1992 Asphalt Concrete Overlay 
34-0505 07/20/1992 Asphalt Concrete Overlay 
34-0506 07/20/1992 Mill Off AC and Overlay with AC 
34-0507 07/20/1992 Mill Off AC and Overlay with AC 
34-0508 07/20/1992 Mill Existing Pavement and Overlay with Hot-Mix Recycled AC 
34-0509 07/20/1992 Mill Existing Pavement and Overlay with Hot-Mix Recycled AC 
34-0559 07/20/1992 Mill Existing Pavement and Overlay with Hot-Mix Recycled AC 
34-0560 07/20/1992 Mill Off AC and Overlay with AC 
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The extent of distresses in the existing asphalt pavement is another input in the asphalt 

overlay design. Table 8.12 summarizes the distresses recorded on the 19 LTPP sections in the last 

distress survey conducted before the overlay construction. 

 
Table 8.12: Distresses Recorded in the Last Survey before Overlay Construction 

Section 

Fatigue-
Alligator 
Cracking 

(%) 

Longitudinal 
Cracking 

(WP) 
(ft/mile) 

Longitudinal 
Cracking 
(NWP) 
(ft/mile) 

Transverse 
Cracking 

(Count/mile) 

Rutting 
(inch) 

23-0502 0 0 10,255 370 0.512 
23-0503 0 0 8,485 655 0.512 
23-0504 0 0 9,711 444 0.591 
23-0505 0 13.9 9,815 11 0.551 
23-0506 0 27.7 6,849 148 0.630 
23-0507 0 0 10,567 - 0.591 
23-0508 0 0 10,567 - 0.669 
23-0509 0 0 10,214 21 0.669 
23-0559 0 0 10,567 53 0.433 
34-0502 81.82 2,584.6 14,045 2,397 0.354 
34-0503 3.34 658.3 14,219 1,331 0.276 
34-0504 5.09 762.2 17,364 581 0.157 
34-0505 11.75 349.9 9,347 1,109 0.276 
34-0506 5.70 516.2 8,883 982 0.354 
34-0507 11.88 1,243.8 12,168 1,880 0.315 
34-0508 4.14 568.2 11,003 1,183 0.236 
34-0509 1.94 505.8 14,586 2,207 0.276 
34-0559 13.54 776.1 15,882 813 0.236 
34-0560 31.61 634.0 18,736 2,165 0.315 

 

For Level 2 design, the AASHTOWare PMED software requires the total length of 

transverse cracking, the percent lane area with fatigue cracking, and rutting in the asphalt, base, 

subbase, and subgrade layers. These inputs were computed from the data in Table 8.12. Rutting 

in each of the asphalt, base, subbase, and subgrade layers was computed by equally distributing 

the total measured rutting to the four layers due to the lack of data regarding rut depth in individual 

layers in the LTPP database. For transverse cracking, the length of transverse cracks (ft/mile) was 
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calculated by multiplying the number of transverse cracks per mile by 12 ft, the width of the lane. 

Medium severity was selected for transverse cracking. Finally, for fatigue cracking, the area of 

surface cracking (percent of lane area) was calculated by adding to the percent of fatigue-alligator 

cracking the length of longitudinal cracking in the wheel path multiplied by 1 ft width and by 100.0 

and then divided by 5,280 ft/mile and 12 ft, the lane width. Medium severity was selected for 

fatigue cracking. 

8.2.5 Measured Pavement Distress Data 

The accuracy of measured distresses for the selected LTPP sites significantly enhanced the 

predictions of the embedded performance models in the AASHTOWare PMED software, version 

2.6.2.2. The actual distress values were extracted from the LTPP database. For sake of brevity, 

only the values used in the calibration process are reported in Tables 8.13 and 8.14. The extracted 

distress data included alligator cracking (percent cracked of the lane area), longitudinal cracking 

in the wheel path (ft/mile), transverse cracking (ft/mile), total tutting (inches), and IRI 

(inches/mile). For calibration, this study utilized the LTTP distress data from the last three distress 

surveys prior to a repair action or un-assignment of a section. As shown in Tables 8.13 and 8.14, 

no alligator cracking occurred on the Maine sections, and no longitudinal cracking was recorded 

in the wheel path for the New Jersey sections, except for section 34-0502, which had extensive 

longitudinal cracking. The lengths of longitudinal cracks recorded for this section decreased to 

almost one-third their recorded lengths from November 9, 1999, to October 19, 2000. Extensive 

transverse cracking was recorded for the New Jersey sections, but significantly less transverse 

cracking was recorded on the Maine sections. 

Higher values for the total rutting on the pavement surface were recorded for the Maine 

sections than for the New Jersey sections. Overall, the Maine sections exhibited more rutting in 

the eight years they were monitored, while the New Jersey sections exhibited more cracking. These 

results suggest that the geographic location, local conditions, and applied construction practices 

may strongly influence LTPP pavement performance. 

The LTPP database provides the IRI values in the left and right wheel paths and their 

average for five passes of the profiler for each section and date. The values shown in Table 8.14 
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are the computed means of the five average values, with the values marked in bold indicating their 

selection for calibration because they were close to the dates of the other surveyed distresses. As 

shown in Table 8.14, all LTPP sections were very smooth and the IRI values were very low, often 

less than 63.0 inches/mile, the typical value for a newly constructed asphalt pavement. In addition, 

the IRI values decreased over time for several of the Maine sections, which contradicts the 

assumption that the roughness of the longitudinal profile of a road section always increases over 

time. The measured IRI values are given in Tables 8.15 and 8.16. 

 
Table 8.13: Measured Distresses - Maine Sections 

Section Date Age 
(months) 

Alligator 
Cracking 

(%) 

Longitudinal 
Cracking 

(WP) (ft/mile) 

Transverse 
Cracking 

(Count/mile) 

Rutting 
(inch) 

23-0502 8/29/2001 6.2 0 0 - 0.354 
23-0502 8/27/2002 7.2 0 0 - 0.433 
23-0502 6/15/2003 8.0 0 322.2 116 0.394 
23-0503 8/29/2001 6.2 0 0 - 0.315 
23-0503 8/27/2002 7.2 0 0 - 0.394 
23-0503 6/15/2003 8.0 0 2,771.7 21 0.394 
23-0504 8/29/2001 6.2 0 0 - 0.394 
23-0504 8/27/2002 7.2 0 0 - 0.433 
23-0504 6/15/2003 8.0 0 821.1 - 0.354 
23-0505 8/29/2001 6.2 0 0 21 0.354 
23-0505 8/27/2002 7.2 0 0 - 0.394 
23-0505 6/15/2003 8.0 0 - 106 0.276 
23-0506 8/29/2001 6.2 0 0 - 0.551 
23-0506 8/27/2002 7.2 0 0 - 0.591 
23-0506 6/15/2003 8.0 0 602.8 53 0.512 
23-0507 8/29/2001 6.2 0 0 - 0.472 
23-0507 8/27/2002 7.2 0 0 - 0.472 
23-0507 6/15/2003 8.0 0 370.7 - 0.394 
23-0508 8/29/2001 6.2 0 0 - 0.472 
23-0508 8/27/2002 7.2 0 0 - 0.472 
23-0508 6/15/2003 8.0 0 - - 0.433 
23-0509 8/29/2001 6.2 0 0 - 0.472 
23-0509 8/27/2002 7.2 0 0 - 0.472 
23-0509 6/15/2003 8.0 0 - 21 0.394 
23-0559 8/29/2001 6.2 0 0 - 0.315 
23-0559 8/27/2002 7.2 0 0 - 0.354 
23-0559 6/15/2003 8.0 0 17.3 11 0.276 
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Table 8.14: Measured Distresses – New Jersey Sections 

Section Date Age 
(months) 

Alligator 
Cracking 

(%) 

Longitudinal 
Cracking 

(WP) (ft/mile) 

Transverse 
Cracking 

(Count/mile) 

Rutting 
(inch) 

34-0502 11/9/1999 7.3 1.97 398.4 507 0.157 
34-0502 7/17/2000 8.0 0.29 190.6 792 0.157 
34-0502 10/19/2000 8.2 4.22 135.1 528 0.157 
34-0503 3/13/2004 11.7 5.06 0 686 0.157 
34-0503 12/3/2005 13.4 2.13 0 602 0.157 
34-0503 4/25/2009 16.8 34.71 0 1,172 0.157 
34-0504 3/13/2004 11.7 3.86 0 296 0.118 
34-0504 3/5/2006 13.4 4.70 0 264 0.157 
34-0504 4/25/2009 16.8 5.11 0 623 0.157 
34-0505 3/13/2004 11.7 5.06 0 422 0.118 
34-0505 3/5/2006 13.4 3.80 0 507 0.118 
34-0505 4/25/2009 16.8 8.29 0 1,067 0.118 
34-0506 3/13/2004 11.7 0.48 0 211 0.157 
34-0506 12/3/2005 13.4 0.13 0 106 0.157 
34-0506 4/25/2009 16.8 3.25 0 697 0.157 
34-0507 3/13/2004 11.7 3.82 0 422 0.157 
34-0507 12/3/2005 13.4 1.33 0 275 0.197 
34-0507 4/25/2009 16.8 13.65 0 972 0.197 
34-0508 3/13/2004 11.7 3.46 0 623 0.157 
34-0508 12/3/2005 13.4 2.21 0 549 0.118 
34-0508 4/25/2009 16.8 19.36 0 612 0.157 
34-0509 3/13/2004 11.7 22.53 0 496 0.197 
34-0509 12/3/2005 13.4 20.65 0 11 0.157 
34-0509 4/25/2009 16.8 33.44 0 106 0.197 
34-0559 3/13/2004 11.7 18.98 0 401 0.118 
34-0559 3/5/2006 13.4 22.41 0 338 0.118 
34-0559 4/25/2009 16.8 40.97 0 919 0.118 
34-0560 3/13/2004 11.7 9.76 0 158 0.236 
34-0560 3/5/2006 13.4 8.65 0 201 0.236 
34-0560 4/25/2009 16.8 47.86 0 296 0.236 
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Table 8.15: Measured IRI – Maine Sections (inch/mile) 

Date 23-
0502 

23-
0503 

23-
0504 

23-
0505 

23-
0506 

23-
0507 

23-
0508 

23-
0509 

23-
0559 

4/21/1995 64.87 76.83 86.56 80.56 73.33 90.85 78.26 69.51 48.08 
8/15/1995 48.99 59.86    54.07    

8/25/1997 43.16 55.82 53.46 42.24 50.33 51.90 47.55 62.03 47.61 
6/22/1998 43.08 55.26 52.30 41.63 47.80 51.85 46.27 60.66 47.13 
9/30/1999 41.35 53.46 52.23 40.88 47.63 52.02 44.82 59.52 46.38 
9/29/2000 40.99 53.30 51.27 40.09 46.96 52.03 43.73 57.96 46.23 
8/23/2001 41.27 52.85 59.04 43.33 51.58 59.74 43.69 58.32 45.66 
8/27/2002 40.26 51.51 52.36 42.25 49.74 58.38 45.75 58.73 46.53 
9/19/2003 38.78 50.45 51.13 40.03 50.17 56.97 44.06 55.86 42.45 
7/29/2004 39.12 49.90 50.49 40.13 50.27 60.03 44.73 56.43 42.38 

 
Table 8.16: Measured IRI – New Jersey Sections (inch/mile) 

Date 34-
0502 

34-
0503 

34-
0504 

34-
0505 

34-
0506 

34-
0507 

34-
0508 

34-
0509 

34-
0559 

34-
0560 

10/30/1992 62.95 42.45 45.39 56.10 46.43 49.47 46.87 47.74 54.58 38.85 
6/14/1993 63.04 42.26 44.33 55.40 47.01 47.66 46.75 47.38 53.96 40.31 
6/9/1994 67.92 - 46.38 55.78 - - 45.68 48.65 - - 

6/23/1995 64.63 44.30 46.57 56.17 - 50.73 47.09 48.84 - - 
12/13/1997 67.93 44.49 49.80 55.44 49.94 50.03 46.89 48.37 57.04 54.81 

8/5/1998 68.85 45.73 50.55 56.12 53.60 53.43 48.71 50.87 55.92 58.57 
9/7/1999 67.17 44.19 51.26 56.96 51.45 50.12 46.65 48.19 55.87 62.37 

10/4/2000 68.23 44.28 50.93 57.19 51.69 51.71 46.67 48.31 55.20 64.39 
12/5/2001 69.38 45.61 54.68 58.32 51.96 55.14 48.93 49.04 57.99 64.74 
6/4/2002 72.47 46.05 55.05 59.06 53.25 54.34 48.23 50.07 58.16 67.80 

10/29/2002 70.44 46.24 53.10 56.72 51.40 54.32 46.54 48.99 56.56 67.74 
1/11/2003 71.61 44.73 51.80 57.06 51.90 51.89 48.14 49.21 57.95 64.36 
5/4/2003 70.82 44.62 56.47 59.18 51.88 53.93 48.28 49.74 57.21 65.10 

10/25/2003 70.62 45.30 51.74 57.52 51.69 53.88 47.81 50.60 54.15 67.63 
2/18/2004 70.43 45.67 50.93 59.34 51.25 52.83 47.33 50.31 54.83 68.29 
3/15/2004 74.60 46.32 53.62 59.36 52.87 54.25 49.32 50.76 58.71 67.50 
8/11/2005 85.28 50.46 60.48 60.91 55.02 56.90 50.81 53.26 57.51 70.53 
6/10/2006 85.46 56.95 61.97 62.49 55.67 50.87 51.33 53.30 57.39 71.37 
4/24/2009 90.58 53.21 57.53 63.25 52.79 49.41 55.52 53.75 58.32 83.84 
3/8/2010 118.42 66.33 67.42 69.28 58.94 62.32 64.03 57.95 65.35 75.26 
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Since the design software computes the increase in IRI over time relative to the initial IRI, 

a comparison of the predicted and measured increase in IRI is possible when measured 

immediately following overlay construction. In this study, the initial IRI was available in the LTPP 

database for all New Jersey sections but only three Maine sections, as underlined in Tables 8.15 

and 8.16. Due to the unavailability of the initial IRI values for six of the nine sections and the 

decreasing trend of IRI values for the remaining Maine sections, only the IRI data recorded for the 

New Jersey sections was retained for the model calibration. 

 8.3 Calibration of the Performance Models for NYSDOT 

Although NYSDOT uses only the IRI trigger value to decide on overlaying pavements, 

this study performed local calibration for alligator cracking, total rutting, and IRI. An estimation 

of local bias found that the measured thermal cracking data were unreliable, so the calibration of 

the thermal cracking model was not done. Similarly, calibration of longitudinal cracking also was 

not conducted due to observed inaccuracies while the calibration coefficients were developed. 

Inaccuracies in the predicted longitudinal cracking distresses were also observed by the Montana 

DOT as they implemented the MEPDG (Von Quintus & Moulthrop, 2007) and in Canada 

(Alauddin et al., 2013). 

8.3.1 Sample Size Estimation for Distress Prediction Models 

In this research, the minimum number of road segments required to calibrate the 

performance models was determined by the mean and variance of the distress quantity, resulting 

in significant variations in the estimated sample size for the rutting model, the longitudinal 

cracking model, the transverse cracking model, and the IRI model. As a result, the most reliable 

estimated sample size was adopted. Equation 8.1 was employed to estimate the sample size for 

bias (AASHTO, 2010). 

𝑁𝑁 = �𝑍𝑍∝/2 ∗ 𝛿𝛿
𝐸𝐸𝑇𝑇

�
2
   

 Equation 8.1 
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The sample size estimation based on bias (or the mean) is summarized in Table 8.17. In 

the development of the table, the level of confidence was 90%, and the design reliability was 90% 

based on the Comprehensive Pavement Design Manual of NYSDOT (NYSDOT, 2021). Although 

the threshold value of each distress parameter was based on the recommended values by the 

MEPDG Manual of Practice (AASHTO, 2020), the IRI trigger value was provided by the PMS 

unit of NYSDOT, which uses IRI trigger values ranging from 200 to 250 inches/mile. Therefore, 

the mid-range value (225 inches/mile) was used in this research. The PMED software computes 

the IRI increase from the initial value (IRI0), so the IRI recorded immediately after the overlay 

construction, the IRI increase from the initial value of IRI0 = 63.0 inches/mile, was used to 

calculate the number of sections needed for calibration. The standard error of estimate (SEE) for 

each model was computed based on the trigger value of each distress model. For the IRI model, 

the SEE was 18.9 inches/mile according to AASHTO (2008). Finally, the tolerable Bias (𝐸𝐸𝑇𝑇) was 

estimated at 90% confidence level. 

As shown in Table 8.17, the estimated sample size satisfied the requirements for alligator 

cracking and rutting models. Although only the LTPP segments could be obtained, the estimated 

sample size for transverse cracking and IRI were not further considered; the 19 LTPP sites were 

assumed to be sufficient. 

 
Table 8.17: Estimated Minimum Number of Sites Needed for Validation & Local 

Calibration Based on Bias 

Performance Model 
Alligator 
Cracking 
(% area) 

Longitudinal 
Cracking 
(ft/mile) 

Transverse 
Cracking 
(ft/mile) 

Rut 
Depth 
(in.) 

IRI –IRI0 
(in/mile) 

Performance Indicator 
Threshold (@ 90% 

Reliability) (δ) 
10% 1,060 500 0.4 225-63=162 

Standard Error of Estimate 5.01% 582.8 83 0.107 18.9 

Tolerable Bias (ET) 8.70% 956 136 0.215 31 
Minimum No. of Sites 

Required for Validation & 
Local Calibration 

4 4 36 14 74 

Number of the LTPP 
Sections Used 19 19 19 19 10 

 𝑍𝑍∝/2 = 1.64           𝐸𝐸𝑇𝑇 = 𝑆𝑆𝐸𝐸𝐸𝐸 ∗ 𝑍𝑍∝/2 
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8.3.2 Extraction, Evaluation, and Conversion of the Measured Data 

The AASHTOWare PMED software, version 2.6.2.2, was run for the 19 LTPP sections 

using global calibration factors. The design files were prepared with input values from Tables 8.1–

8.13. When input values were not available, the default values recommended by the software and 

Level 3 design for the input were used. Results were obtained in both Adobe pdf and Microsoft 

Excel files. The computed or predicted distress data needed for calibration were extracted from the 

files, as shown in Tables 8.20 and 8.21, for the same dates as the measured distress values in 

Tables 8.14–8.16. When needed, the measured or predicted distress data were converted so the 

corresponding variables had the same units of measurement. For example, measured transverse 

cracking was converted from the number of cracks per mile to length of transverse cracks per mile 

by multiplying the number of cracks by the lane width of 12 feet. 

8.3.3 Assessment of Local Bias and Standard Error of the Estimate from Global 
Calibration Factors 

The full set of measured data and computed distresses from the runs of the AASHTOWare 

PMED, version 2.6.2.2, were used to assess the local bias and SEE.  The following null hypothesis 

was used for the assessment: 

𝐻𝐻𝑜𝑜:𝐶𝐶𝑚𝑚𝑎𝑎𝑀𝑀𝑢𝑢𝑟𝑟𝑚𝑚𝑀𝑀 𝐷𝐷𝑚𝑚𝑀𝑀𝑡𝑡𝑟𝑟𝑚𝑚𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀 = 𝑅𝑅𝐻𝐻𝑚𝑚𝐶𝐶𝑢𝑢𝑡𝑡𝑚𝑚𝑀𝑀 𝐷𝐷𝑚𝑚𝑀𝑀𝑡𝑡𝑟𝑟𝑚𝑚𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀 

𝐻𝐻𝑒𝑒:𝐶𝐶𝑚𝑚𝑎𝑎𝑀𝑀𝑢𝑢𝑟𝑟𝑚𝑚𝑀𝑀 𝐷𝐷𝑚𝑚𝑀𝑀𝑡𝑡𝑟𝑟𝑚𝑚𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀 ≠ 𝑅𝑅𝐻𝐻𝑚𝑚𝐶𝐶𝑢𝑢𝑡𝑡𝑚𝑚𝑀𝑀 𝐷𝐷𝑚𝑚𝑀𝑀𝑡𝑡𝑟𝑟𝑚𝑚𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀 

The paired t-test typically tests the hypothesis at 95% confidence level, and the hypothesis 

is rejected when the p-value computed for the paired t-test is less than 0.05, the level of 

significance. 

In addition, the plots of measured versus computed distresses were prepared for each model 

to investigate the location of points versus the line of equality. The slope of the fitting line through 

the origin was used to estimate the proportional calibration factor for models where such a factor 

can be used to estimate the local calibration coefficient. The local calibration coefficient was then 

computed as the global calibration coefficient multiplied by the slope of the fitting line. The plots 

revealed significant discrepancies between the predicted and measured distresses, meaning 

calibration outside of the AASHTO PMED software environment may not be reasonable. 
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Table 8.18: Predicted Distresses for Maine Sections 

Section Date Age 
(years) 

Total 
PD 
(in.) 

AC-
only 
PD 
(in.) 

AC total 
fatigue 

cracking: 
bottom up + 
reflective (% 

lane area) 

AC 
bottom-up 

fatigue 
cracking 
(% lane 

area) 

AC top-
down 

fatigue 
cracking 
(% lane 

area) 

AC total 
transverse 
cracking: 
thermal + 
reflective 
(ft/mile) 

AC 
thermal 
cracking 
(ft/mile) 

23-0502 8/2001 6.2 0.061 0.061 0.02 0.00 3.62 4,458 1,130 
23-0502 8/2002 7.2 0.064 0.064 0.02 0.00 3.95 4,490 1,162 
23-0502 6/2003 8.0 0.064 0.064 0.02 0.00 4.20 4,743 1,415 
23-0503 8/2001 6.2 0.043 0.043 0.00 0.00 3.58 5,793 0 
23-0503 8/2002 7.2 0.045 0.045 0.00 0.00 3.92 5,793 0 
23-0503 6/2003 8.0 0.045 0.045 0.00 0.00 4.17 5,793 0 
23-0504 8/2001 6.2 0.040 0.040 0.00 0.00 3.61 3,994 0 
23-0504 8/2002 7.2 0.042 0.042 0.00 0.00 3.95 3,994 0 
23-0504 6/2003 8.0 0.042 0.042 0.00 0.00 4.19 3,994 0 
23-0505 8/2001 6.2 0.068 0.068 0.01 0.00 3.62 99 0 
23-0505 8/2002 7.2 0.071 0.071 0.01 0.00 3.95 99 0 
23-0505 6/2003 8.0 0.072 0.072 0.02 0.00 4.20 99 0 
23-0506 8/2001 6.2 0.071 0.071 0.00 0.00 3.64 1,331 0 
23-0506 8/2002 7.2 0.075 0.075 0.00 0.00 3.97 1,331 0 
23-0506 6/2003 8.0 0.075 0.075 0.00 0.00 4.21 1,331 0 
23-0507 8/2001 6.2 0.042 0.042 0.00 0.00 3.61 0 0 
23-0507 8/2002 7.2 0.044 0.044 0.00 0.00 3.95 0 0 
23-0507 6/2003 8.0 0.044 0.044 0.00 0.00 4.19 0 0 
23-0508 8/2001 6.2 0.049 0.049 0.00 0.00 3.60 0 2 
23-0508 8/2002 7.2 0.051 0.051 0.00 0.00 3.93 0 3 
23-0508 6/2003 8.0 0.051 0.051 0.00 0.00 4.18 0 10 
23-0509 8/2001 6.2 0.191 0.064 0.00 0.00 3.63 189 0 
23-0509 8/2002 7.2 0.196 0.067 0.00 0.00 3.96 189 0 
23-0509 6/2003 8.0 0.198 0.068 0.00 0.00 4.21 189 0 
23-0559 8/2001 6.2 0.196 0.075 0.00 0.00 3.63 476 0 
23-0559 8/2002 7.2 0.202 0.079 0.00 0.00 3.96 477 0 
23-0559 6/2003 8.0 0.204 0.079 0.00 0.00 4.20 477 0 
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Table 8.19: Predicted Distresses for New Jersey Sections 

Section Date Age 
(years) 

Total 
PD 
(in.) 

AC-
only 
PD 
(in.) 

AC total 
fatigue 

cracking: 
bottom up + 
reflective (% 

lane area) 

AC 
bottom-up 

fatigue 
cracking 
(% lane 

area) 

AC top-
down 

fatigue 
cracking 
(% lane 

area) 

AC total 
transverse 
cracking: 
thermal + 
reflective 
(ft/mile) 

AC 
thermal 
cracking 
(ft/mile) 

34-0502 11/1999 7.3 0.34 0.188 76.25 0.10 4.18 23,674 2,112 
34-0502 7/2000 8.0 0.35 0.193 76.36 0.20 4.36 23,674 2,112 
34-0502 10/2000 8.2 0.35 0.195 76.45 0.30 4.42 23,674 2,112 
34-0503 3/2004 11.7 0.03 0.025 1.45 0.00 5.18 13,655 1,690 
34-0503 12/2005 13.4 0.03 0.027 2.10 0.00 5.49 13,673 1,700 
34-0503 4/2009 16.8 0.03 0.029 2.39 0.00 5.99 13,684 1,711 
34-0504 3/2004 11.7 0.02 0.024 6.13 0.00 5.16 6,053 2,038 
34-0504 12/2005 13.4 0.03 0.026 6.42 0.00 5.47 7,264 2,038 
34-0504 4/2009 16.8 0.03 0.027 6.90 0.00 5.98 7,264 2,038 
34-0505 3/2004 11.7 0.03 0.028 12.04 0.00 5.17 12,088 2,112 
34-0505 12/2005 13.4 0.03 0.030 12.24 0.00 5.48 12,088 2,112 
34-0505 4/2009 16.8 0.03 0.033 12.54 0.00 5.99 12,088 2,112 
34-0506 3/2004 11.7 0.04 0.039 5.74 0.00 5.18 10,513 1,679 
34-0506 12/2005 13.4 0.04 0.041 5.80 0.00 5.49 10,534 1,700 
34-0506 4/2009 16.8 0.04 0.044 5.91 0.00 6.00 10,534 1,700 
34-0507 3/2004 11.7 0.02 0.020 11.60 0.00 5.17 18,990 2,080 
34-0507 12/2005 13.4 0.02 0.022 11.67 0.00 5.48 18,990 2,080 
34-0507 4/2009 16.8 0.02 0.023 11.77 0.00 5.99 19,001 2,091 
34-0508 3/2004 11.7 0.03 0.020 4.20 0.00 5.17 12,719 2,112 
34-0508 12/2005 13.4 0.03 0.021 4.26 0.00 5.48 12,719 2,112 
34-0508 4/2009 16.8 0.04 0.023 4.35 0.00 5.99 12,719 2,112 
34-0509 3/2004 11.7 0.04 0.035 1.98 0.00 5.18 21,617 1,764 
34-0509 12/2005 13.4 0.04 0.037 2.01 0.00 5.49 21,627 1,774 
34-0509 4/2009 16.8 0.04 0.040 2.06 0.00 6.00 21,638 1,785 
34-0559 3/2004 11.7 0.07 0.038 14.17 0.00 5.19 9,425 2,112 
34-0559 12/2005 13.4 0.07 0.040 14.47 0.00 5.50 9,425 2,112 
34-0559 4/2009 16.8 0.08 0.043 14.91 0.00 6.00 9,425 2,112 
34-0560 3/2004 11.7 0.03 0.032 39.79 0.00 5.18 21,587 2,112 
34-0560 12/2005 13.4 0.03 0.034 41.73 0.00 5.47 21,587 2,112 
34-0560 4/2009 16.8 0.04 0.037 44.77 0.00 5.99 21,587 2,112 
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Table 8.20: Predicted IRI for New Jersey Sections (inch/mile) 

Section Date Age 
(years) 

Measured 
IRI 

(in./mile) 

Measured 
IRI0 

(in./mile) 

Predicted 
IRI 

(in./mile) 

Predicted 
IRI-IRI0 
(in./mile) 

Measured 
IRI-IRI0 
(in./mile) 

34-0502 9/7/1999 7.1 67.17 62.95 302.4 239.4 4.22 
34-0502 10/19/2000 8.2 68.23 62.95 304.2 241.2 5.28 
34-0503 3/13/2004 11.7 46.32 42.45 188.3 125.3 3.87 
34-0503 8/11/2005 13.1 50.46 42.45 191.0 128.0 8.01 
34-0503 4/25/2009 16.8 53.21 42.45 198.3 135.3 10.76 
34-0504 3/13/2004 11.7 53.62 45.39 127.6 64.6 8.23 
34-0504 8/11/2005 13.1 60.48 45.39 139.9 76.9 15.09 
34-0504 4/25/2009 16.8 57.53 45.39 146.9 83.9 12.14 
34-0505 3/13/2004 11.7 59.36 56.10 178.6 115.6 3.26 
34-0505 8/11/2005 13.1 60.91 56.10 181.1 118.1 4.81 
34-0505 4/25/2009 16.8 63.25 56.10 188.2 125.2 7.15 
34-0506 3/13/2004 11.7 52.87 46.43 162.9 99.9 6.44 
34-0506 8/11/2005 13.1 55.02 46.43 165.4 102.4 8.59 
34-0506 4/25/2009 16.8 52.79 46.43 171.9 108.9 6.36 
34-0507 3/13/2004 11.7 54.25 49.47 233.2 170.2 4.78 
34-0507 8/11/2005 13.1 56.90 49.47 235.6 172.6 7.43 
34-0507 4/25/2009 16.8 49.41 49.47 242.6 179.6 -0.06 
34-0508 3/13/2004 11.7 49.32 46.87 180.8 117.8 2.45 
34-0508 8/11/2005 13.1 50.81 46.87 183.4 120.4 3.94 
34-0508 4/25/2009 16.8 55.52 46.87 190.5 127.5 8.65 
34-0509 3/13/2004 11.7 50.76 47.74 252.2 189.2 3.02 
34-0509 8/11/2005 13.1 53.26 47.74 254.9 191.9 5.52 
34-0509 4/25/2009 16.8 53.75 47.74 262.1 199.1 6.01 
34-0559 3/13/2004 11.7 58.71 54.58 159.4 96.4 4.13 
34-0559 8/11/2005 13.1 57.51 54.58 162.0 99.0 2.93 
34-0559 4/25/2009 16.8 58.32 54.58 169.0 106.0 3.74 
34-0560 3/13/2004 11.7 67.50 38.85 265.4 202.4 28.65 
34-0560 8/11/2005 13.1 70.53 38.85 268.5 205.5 31.68 
34-0560 4/25/2009 16.8 83.84 38.85 276.6 213.6 44.99 

Note: Predicted IRI0 = 63.0 inches/mile 
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8.3.4 Calibration of the Rutting Models 

The LTPP database contains only the rutting values measured at the pavement surface, 

which is the total rutting (Tables 8.13 and 8.14). The PMED computes the total permanent 

deformation, PDC
Total, as well as the permanent deformation in the asphalt layers, PDC

AC, with the 

difference being permanent deformation in the unbound foundation layers, PDC
unbound. To calibrate 

the rutting models for asphalt concrete and granular layers, the measured total rutting, PDM
Total, 

was divided into measured permanent deformation in the asphalt concrete, PDM
AC, and permanent 

deformation in the foundation layers, PDM
unbound, proportional to the corresponding computed 

values of the permanent deformation as follows: 

PDMunbound  = PDMTotal * [ 1 - PDCAC / PDCTotal ] 
 Equation 8.2 

PDMAC  = 0.333 * PDMTotal * [ PDCAC / PDCTotal ]   
 Equation 8.3 

The 0.333 factor was added to account for mixes used in the calibrated LTPP sections that 

were designed before the Superpave mix design was implemented. Calibration efforts in Montana 

and accelerated pavement tests at Kansas State University proved that the Superpave mixes exhibit 

approximately one-third of the rutting observed in pre-Superpave mixes due to improved binder 

grading system and selection, more stringent requirements for aggregate angularity, and the 

monitoring of volumetric properties of mix samples during compaction. Figure 8.2 shows that a 

group of three influential observations control the line of best fit. These observations are the values 

computed for section 34-0502, for which the computed AC rutting is approximately 0.20 inches. 

For a pure statistical analysis, these observations must be removed, and the trend between 

measured and computed values must be reevaluated. 
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Figure 8.2: Measured vs. Computed AC Rutting (Global Calibration) 

 

Figure 8.3 shows the plot of measured and computed AC rutting with the global calibration 

coefficients and no values recorded for section 34-0502. As shown in the figure, the observations 

are properly distributed relative to the proportionality line. The slope of the linear fitting curve 

with no intercept is 1.7869. Therefore, the local calibration factor for AC rutting replaced the 

global factor, 0.40, and this factor becomes: 

𝜷𝜷𝟏𝟏𝟏𝟏 = 𝟎𝟎.𝟒𝟒𝟎𝟎 ∗ 𝟏𝟏.𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕 = 𝟎𝟎.𝟕𝟕𝟏𝟏𝟒𝟒𝟕𝟕  
 Equation 8.4 
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Figure 8.3: Measured vs. Computed AC Rutting (Global Calibration) without Section 34-

0502 

 

After the computed AC values were multiplied by the adjustment factor 1.7869, the two-

tail test p-value was 0.5053, which was higher than the 0.05 significance level. Therefore, the bias 

between computed and measured AC rutting was eliminated. 

Figure 8.4 shows a plot of the measured and computed rutting in the unbound foundation 

layers. Fewer data points are shown for rutting in the unbound layers compared to rutting in the 

AC layer because the computed and measured rutting in the unbound layers was equal to 0.0 for 

all but five sections. A paired t-test performed at 95% confidence level revealed a slight difference 

between the measured and computed rutting in unbound layers, with the two-tail p-value equal to 

0.0818. The slope of the linear fit regression line with no intercept was 1.2997. Therefore, the local 

calibration factor for rutting in unbound layers was βs1 = 1.2997, replacing the global factor, 1.00. 
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Figure 8.4: Measured and Computed Rutting in Unbound Layers (Global Calibration) 

 

After the computed AC values were multiplied by the adjustment factor of 1.2997, the p-

value for the two-tail t-test was 0.5243, which was higher than the 0.05 significance level. 

Therefore, the bias between computed and measured rutting in unbound layers was eliminated. 

8.3.5 Calibration of the Longitudinal Cracking Model 

Longitudinal cracks in the wheel path were assumed to initiate at the top of the asphalt 

layer and progress downward. Tables 8.13 and 8.14 present the measured length of longitudinal 

cracking in the wheel-path values in feet per mile. As shown in the tables, only one New Jersey 

section (34-0502) had longitudinal cracks in the wheel path, as well as several Maine sections. To 

calibrate the longitudinal cracking model, the measured values were converted into percent lane 

area by multiplying the length in feet per mile by 100 and dividing by lane width of 12 feet and 

5,280 feet per mile. The converted values were paired with the calculated top-down cracking extent 

in Tables 8.20 and 8.21. The plot of the measured versus calculated longitudinal cracking is 

presented in Figure 8.5, which shows that the calculated values were much higher than the 

measured values for all but one year for one section. The PMED predicts the crack length and the 
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time to initiation of the top-down cracks; the two models contain three and five calibration 

coefficients, respectively. Because the LTPP database does not contain the time to crack initiation, 

t0, and because more than half of the sections did not exhibit longitudinal cracks during the survey 

period, the longitudinal cracking models could not be calibrated to local conditions outside of the 

PMED software environment. 

 

 
Figure 8.5: Measured vs. Computed Longitudinal Cracking (Global Calibration) 

8.3.6 Calibration of the Fatigue and Reflective Alligator Cracking Models 

Evaluation of measured and computed alligator cracking (Tables 8.12–8.14 and 8.20–8.21) 

found no alligator cracking before and after overlay construction for all Maine sections. The 

PMED software also did not predict any bottom-up fatigue or reflective alligator cracking for the 

Maine sections. Therefore, only the alligator cracking data for the New Jersey sections were 

retained to calibrate the alligator cracking models. The measured and computed alligator cracking 

data for the New Jersey sections were assembled from Tables 8.12, 8.14, and 8.21. Therefore, the 

computed values shown in Table 8.23 represent reflection cracking only, and the model for 
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bottom-up fatigue cracking could not be calibrated with the New Jersey data. The computed 

bottom-up fatigue cracking, given in Table 8.21, was 0. 

 
Table 8.21: Measured and Computed Alligator Cracking for New Jersey Sections 

Date 34-
0502 

34-
0503 

34-
0504 

34-
0505 

34-
0506 

34-
0507 

34-
0508 

34-
0509 

34-
0559 

34-
0560 

Alligator cracking measured before the construction of the overlay (from Table 8.12) 
 81.82 3.34 5.09 11.75 5.7 11.88 4.14 1.94 13.54 31.61 

Measured alligator cracking (from Table 8.14) 
Nov-99 1.97          

Jul-00 0.29          

Oct-00 4.22          

Mar-04  5.06 3.86 5.06 0.48 3.82 3.46 22.53 18.98 9.76 
Dec-05  2.13 4.7 3.8 0.13 1.33 2.21 20.65 22.41 8.65 
Apr-09  34.71 5.11 8.29 3.25 13.65 19.36 33.44 40.97 47.86 
Computed reflective alligator cracking (from Table 8.21) 
Nov-99 76.15          

Jul-00 76.16          

Oct-00 76.15          

Mar-04  1.45 6.13 12.04 5.74 11.6 4.2 1.98 14.17 39.79 
Dec-05  2.1 6.42 12.24 5.8 11.67 4.26 2.01 14.47 41.73 
Apr-09  2.39 6.9 12.54 5.91 11.77 4.35 2.06 14.91 44.77 

 

Evaluation of the measured alligator cracking data showed that the extent of alligator 

cracking toward the end of the distress monitoring period was higher than the extent recorded 

before the overlay construction on six of ten sections (34-0503, 34-0507, 34-0508, 34-0509, 34-

0559, and 34-0560). Since reflective cracking cannot have a higher extent than the same cracking 

before overlay construction, the extent of measured alligator cracking while the overlays were in 

service could not be only reflective alligator cracking; some bottom-up fatigue cracking developed 

in these sections. Therefore, the model for reflective alligator cracking could not be calibrated for 

local conditions with the data recorded on the 10 New Jersey LTPP sections. 
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8.3.7 Calibration of the Low-Temperature and Reflective Transverse Cracking 
Models 

Evaluation of the measured and computed transverse cracking (Tables 8.12–8.14 and 

8.20–8.21) indicated that transverse cracking was the primary distress recorded on the New Jersey 

sections before the overlays were constructed. The spacing between transverse cracks was 

occasionally less than 3 ft. Extensive transverse cracking was observed on these sections more 

than 10 years after the sections were rehabilitated. Less transverse cracking was recorded on the 

Maine sections, with Maine sections 23-0507 and 23-0508 having no transverse cracks. 

The PMED software individually estimated the extent of transverse thermal cracking and 

reflection cracking based on fracture mechanics principles. In contrast, the measured extents of 

transverse cracking reported in Tables 8.12–8.14 related to all transverse cracks; the extents of 

reflective cracking and low-temperature cracking were not separated. Therefore, the two models 

could not be calibrated with the transverse cracking data from the 19 sections. In the plot of 

measured versus computed total transverse cracking in Figure 8.6 the predicted total transverse 

cracking is approximately three times the measured transverse cracking. However, the correction 

factor equal to the slope of the regression line, 0.3268, could not be used as a calibration factor 

because only the low-temperature cracking model had a proportionality calibration factor, βt1. 

Unfortunately, the reflection cracking model does not contain a proportionality factor. 
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Figure 8.6: Measured vs. Computed Total Transverse Cracking (Global Calibration) 

8.3.8 Calibration of the IRI Model 

As previously discussed, only IRI data collected on the New Jersey sections were retained 

to calibrate the IRI models. The plot of measured versus computed increase in IRI from the initial 

IRI value (IRI0) (Figure 8.7) shows that the AASHTO PMED software significantly 

overestimated the IRI on average about 16 times, thereby preventing model calibration. 

Overestimation of the IRI values may be attributed to the assumed shallow depth of the water table 

(10 ft); a deeper water table would not contribute as significantly to the development of surface 

distresses, including the IRI. In addition, the computed IRI values were very high due to the 

overestimation of the extent of longitudinal and transverse cracking. 
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Figure 8.7: Measured vs. Computed IRI-IRI0 (Globally Calibrated) 

 8.4 Validation of the Performance Models for Rutting 

The jackknife testing approach was performed only for the rutting models since these 

models were calibrated in this research project and use linear calibration coefficients: β1r = 0.7148 

for asphalt concrete layers and βs1 = 1.2997 for unbound granular layers. Since the models use 

linear calibration coefficients, which corrects the computed permanent deformation values, 

validation was possible without additional runs of the AASHTOWare PMED software. 

To validate each rutting model, the measured total rut depths were initially extracted and 

listed in individual Excel files. For each model, the prepared matrix consisted of a column of 

measured rutting values X (independent variable) and a column of computed rutting values Y 

(predictor), with (i=1,,,,,, 57) sets of observations. One set of (𝑥𝑥𝐵𝐵,𝑦𝑦𝐵𝐵)  was removed during 

beginning of the validation so that the validation matrix contained n-1 = 56 observations to 

estimate a new calibration coefficient. After the calibration was performed on the n-1=56 matrix, 

the calibrated coefficients were used to predict (𝑦𝑦), which was listed in a new 𝐾𝐾𝑡𝑡ℎ group. The new 

standard error is the difference between the measured and the computed rutting values of the 

removed dataset, ( 𝑦𝑦𝑘𝑘𝑡𝑡ℎ1 − 𝑦𝑦1). The removed dataset (𝑥𝑥1,𝑦𝑦1) was then replaced with the second 
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set of observations in the (n-1) validation matrix, which was (𝑦𝑦2,𝑥𝑥2) . The same steps were 

repeated for all observations in the dataset. 

The F-Test was conducted at 95% confidence level to determine if the new standard errors 

were significantly higher than the standard errors of the calibration. The estimated p-values in the 

one-tail F-test for difference in variance were 0.4140 for the AC rutting model and 0.1766 for the 

unbound material rutting model. Since both values were larger than 0.05, the F-test concluded that, 

at 95% confidence level, the new standard errors were not higher than the standard errors of the 

calibration of the calibrated models for rutting in the asphalt layers and rutting in the unbound 

granular layers, thereby validating the two models.  
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Chapter 9: Conclusions 

The first objective of this study was to provide KDOT with AC overlay performance 

models locally calibrated to Kansas conditions in the AASHTOWare PMED software. Twenty-

five AC-rehabilitated sections and 18 JPCP sections were chosen throughout the state. Level 2 

truck traffic volumetric factors were developed from data collected at 11 AVC stations in Kansas, 

and traffic load spectra were developed from 10 WIM stations. A database of material input 

parameters was developed for the chosen pavement sections from the KDOT construction 

management system, quality control and quality assurance database, and as-build construction 

plans. Time-series performance data were extracted from the KDOT PMIS database and evaluated 

for consistencies and potential outliers. The second objective was to calibrate the distress 

prediction models for the state of New York using 19 LTPP AC-over-AC sections in the NE region 

of the United States. The nationally calibrated PMED distress models (e.g., permanent deformation 

model, transverse cracking model, load-related cracking model, and IRI model) were evaluated 

for Kansas and New York conditions. Results showed that global models in the PMED software 

do not accurately predict pavement performance. Local calibration was carried out for these 

models, and the results showed significantly improved prediction accuracy. An automated 

technique was developed to periodically recalibrate PMED prediction models. Robust sampling 

techniques, such as jackknife and bootstrap methods, were incorporated into the automated 

technique. In addition, the TOST approach was included to determine an equivalence margin for 

predicted and measured performance data. 

In addition, this study compared predicted distresses from the models in the AASHTOware 

PMED versions 2.5 and 2.6.2. A series of cracking tests were done on typical Superpave mixtures 

from Kansas and New York. The results were critically evaluated. 

 9.1 Local Calibration Results 

Verification results of the PMED models with global coefficients confirmed the need to 

calibrate transfer function coefficients. After a parameter optimization approach, this study 

conducted local calibration for the permanent deformation model, transverse cracking model, top-
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down fatigue cracking model, and the IRI model. Key findings from the local calibration effort in 

Kansas are summarized below. 

9.1.1 Permanent Deformation Model 

Prediction accuracy of the rutting models improved for both asphalt and concrete 

rehabilitated sections for goodness-of-fit criteria after local calibration; only the 𝛽𝛽1r  and 𝛽𝛽s1 

parameters of the rutting models were optimized. The calibrated model Se was within the 

AASHTO-suggested range of 0.1 inches for AC-over-AC and AC-over-JPCP sections. For both 

sets of projects, the scattered data points in the measured and predicted rutting (local coefficients) 

plot spread symmetrically relative to the line of equality. The paired t-test proved that the bias in 

rutting estimation was eliminated. 

9.1.2 Transverse Cracking Model 

Prediction accuracy of the transverse cracking model improved after local calibration for 

Kansas for both AC-over-AC and AC-over-JPCP sections. For AC-over-AC sections, the Se of the 

calibrated model was below the AASHTO-suggested limit of 250 ft/mile. However, for the AC-

over-JPCP sections, the calibrated model Se (570 ft/mile) was outside the AASHTO-suggested 

range, potentially due to relatively high variation in the measured data (i.e., standard deviation of 

530 ft/mile for AC-over-JPCP sections compared to 200 ft/mile for AC-over-AC sections). The 

high Se of the transverse cracking model could also be due to use of the globally calibrated AC 

thermal cracking model, which potentially contains thermal cracking on the selected JPCP-

rehabilitated projects as well as on the AC-rehabilitated projects, making the thermal cracking 

difficult to distinguish from reflection cracking. The globally calibrated thermal cracking model 

did not predict thermal cracks for any of the rehabilitated sections in this study; thus, all transverse 

cracks measured in the field were regarded as reflective cracks, potentially resulting in a higher Se 

for the transverse cracking model for both AC- and JPCP-rehabilitated sections. 

Transverse cracking prediction relies on a model for low-temperature cracking and a model 

for reflection cracking. PMED over-predicted the total transverse cracking by a factor close to 3.0. 

Since the LTPP database does not record these distresses but indicated that both distresses exist, 

these models could not be calibrated for local conditions in the NE region of the United States. 
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9.1.3 Load-Related Cracking Model 

The calibrated top-down cracking model provided more accurate predictions with lower 

bias and Se compared to the globally calibrated model. However, Se of the top-down cracking 

model was still very high for AC-over-AC sections (1900 ft/mile) and AC-over-JPCP sections and 

above the AASHTO-suggested range (250 ft/mile). The high Se for the top-down cracking model 

could be due to the standard deviation of measured top-down cracking for the AC-over-AC 

projects and AC-over-JPCP projects being 2,000 ft/mile and 1,850 ft/mile, respectively. In this 

study, most fatigue crack measurements were extracted from LCMS surveyed data, including the 

complete profile of roadway segments. However, manually collected distress data had to be used 

for measurements prior to 2013, in which three 100-ft samples were selected from 1-mile 

segments, and an extrapolated figure was reported as total cracking for each 1-mile segment. For 

projects that did not any have cracking in the selected three 100-ft sections, cracking for the 

sections was shown as zero in the KDOT PMIS database. Therefore, the actual sections may have 

cracking that had not been documented. This discrepancy in the data measurement system was 

reflected by high variability in the measured cracking data, and it potentially generated high Se of 

the calibrated top-down cracking model. 

Because KDOT does not consider any load-related cracking to initiate from the bottom of 

the HMA layer, the high Se for the top-down cracking model in this study could also be due to the 

consideration of all load-related cracking to be top-down. However, such variability in top-down 

cracks, especially for AC-over-AC projects, suggests a potentially significant amount of bottom-

up fatigue cracking that was identified as top-down cracking in sections. Documenting all fatigue 

cracks as top-down cracks could have attributed to the high Se for the calibrated longitudinal 

cracking model. The prediction accuracy of top-down cracking has also been a concern for prior 

research (Williams & Shaidur, 2013). Previous calibration efforts found that predictions of 

longitudinal cracking models were too inconsistent to implement in pavement design (Von Quintus 

& Moulthrop, 2007). Improved AC top-down cracking prediction models are currently being 

developed for inclusion in the AASHTOWare PMED software under the NCHRP 1-52 study. The 

current study assumed all load-related cracking to be top-down cracking. 
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For the LTPP section in the NE region of the United States, the PMED software over-

predicted the extent of longitudinal cracking. Most LTPP sections did not exhibit longitudinal 

cracks in the North East. Therefore, the longitudinal cracking model could not be calibrated there. 

Alligator cracking prediction requires a model for bottom-up fatigue cracking and a model 

for reflection cracking. In this study, evaluation of measured alligator cracking data from many 

LTPP sections revealed that the extent of alligator cracking toward the end of the distress 

monitoring period was higher than the extent recorded before the overlay construction. Since 

reflective cracking cannot have a higher extent than the same cracking before overlay construction, 

the extent of alligator cracking measured while the overlays were in service was not only reflective 

alligator cracking; some bottom-up fatigue cracking also developed in these sections. Since the 

data to calibrate the two models were not available, the model for reflective alligator cracking 

could not be calibrated for local conditions in the NE region of the United States using data from 

the LTPP sections. 

9.1.4 IRI Model 

The bias and Sum Squared Error (SSE) of the IRI model decreased after local calibration 

for both AC-over-AC and AC-over-JPCP sections. For AC-over-AC sections, the Se of the 

calibrated model slightly increased, but the calibrated model Se for both section types was within 

the AASHTO-suggested range of 17 inches/mile. However, the nationally calibrated model 

significantly overpredicted the IRI of the 19 LTPP sections selected for calibration. The LTPP 

sections were very smooth right after construction of the asphalt overlays and remained smooth 

throughout the period the sections were monitored, thereby preventing calibration of the IRI model 

for local conditions in the NE region of the United States. 

 9.2 Automated Calibration Technique 

One of the primary objectives of this study was to develop an automated technique for 

highway agencies to perform in-house calibration of PMED performance models. The developed 

automated technique can search PMED output files and identify damages/distresses for a project 

on a particular date. After obtaining relevant damage, the automated technique conducts model 

verification with global factors. The traditional paired t-test and the TOST approach are both 
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conducted, and an optimization technique is used to calibrate PMED model coefficients. The 

automated technique allows users to select either split sampling, jackknife, or bootstrap approaches 

and then a calibration coefficient or a suitable range for the coefficient is provided, and a measured 

versus predicted graph is generated. Model bias, standard error, SSE, p-value from the paired t-

test, and the TOST are also reported. 

9.2.1 Sampling Technique 

Three sampling techniques were incorporated into the automated technique for optimizing 

PMED transfer function calibration coefficients. These sampling techniques were applied for each 

of the PMED models calibrated in this study. Both jackknife and bootstrap sampling techniques 

provided a range for the calibration coefficients. The range of adjusted coefficients was wider 

when the bootstrap technique was utilized, potentially due to the differences in sample size (e.g., 

1000 bootstrap sample versus 25 jackknife sample for AC-over-AC sections). The range is 

dependent on variability in the measured distress data across the pavement sections. Since the 

bootstrap technique omits several sections and creates multiple copies of others for each of the 

1000 samples, a large variation in distresses from project to project generated a wide range of 

calibration coefficients. For example, the range for the transverse cracking model coefficient C4 

using the bootstrap technique was 260–269 for AC-over-AC sections and 830–1120 for AC-over-

JPCP sections. The wide range in C4 for AC-over-JPCP sections was due to the presence of high 

variability in measured data (standard deviation of 200 ft/mile for AC-over-AC sections and 530 

ft/mile for AC-over-JPCP sections). For such instances, the TOST was conducted with a factorial 

of coefficient combinations within the range, and the combination that generates the minimum 

equivalence margin was selected. 

9.2.2 Equivalence Testing 

The automated calibration technique conducts a paired t-test and the TOST. Although the 

traditional paired t-test can confirm differences between two datasets, it cannot support agreement 

among them, while the TOST can establish equivalence between two sets of data for a 

predetermined margin. Since no equivalence margins were previously established for any PMED 

models, this study conducted TOST repeatedly for the calibrated model to identify an equivalence 
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margin. For example, the paired t-test was conducted for the permanent deformation model for 

AC-over-AC sections after local calibration and the null hypothesis could not be rejected. No 

evidence was apparent that the predicted and measured rutting differed after calibration. However, 

the agreement between measured and predicted rutting could not be established from the paired t-

test, and results did not indicate prediction accuracy compared to field-measured rutting data. The 

TOST was then performed multiple times, and the narrowest equivalence margin was 30 mils. 

Therefore, calibrated rutting model predictions and measured rutting in the field were equivalent 

for a margin of 30 mils. 

The repeated TOST was conducted for each of the PMED models calibrated in this study, 

and the equivalence margin was established in each case. Based on the sampling technique, 

however, this margin varied slightly. The split sampling and jackknife methods for the transverse 

cracking model for AC-over-AC sections resulted in the narrowest 𝛿𝛿 of 55 ft/mile, whereas the 

bootstrap technique demonstrated the narrowest 𝛿𝛿 of 53 ft/mile. 

 9.3 Comparison of AASHTOWare MPED Versions 

Study results showed that most predicted distress values remained the same, except for the 

predicted AC total fatigue cracking, especially the asphalt bottom-up fatigue cracking. For both 

distress types, slightly higher values were obtained with the new version of the software (version 

2.6.2), which has changed the predicted distress of top-down cracking from ft/mile to percent lane 

area that is computed from transverse or longitudinal cracking. 

 9.4 Comparison of Laboratory Cracking Test Results 

Study results also showed that IDEAL-CT results could be cracking-resistance criterion 

for mixtures in Kansas. These test outputs had the lowest coefficient of variation. 

 9.5 Recommendations and Needs for Future Research 

This study calibrated PMED prediction models for AC overlays to Kansas conditions. The 

following recommendations would improve PMED prediction accuracy: 

• The agency must ensure more accurate data for pavement layer material 

properties (i.e., HMA, concrete, subbase, and soil properties) to improve 
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accuracy of local calibration. Typical HMA overlay mixes should be 

characterized using the dynamic modulus test and the dynamic shear 

rheometer (DSR) test. Actual modulus values for stabilized and aggregate 

bases should be determined from field sampling and laboratory testing. 

• In this study, all load-related cracking was top-down cracking data; however, 

bottom-up fatigue cracking can occur in AC pavements with high traffic 

levels, especially in later stages of pavement life (Brink, 2015). For future 

calibration efforts, full-depth pavement cores should be collected to 

investigate the origin of crack propagation. Furthermore, the top-down 

cracking model should be recalibrated once the updated model developed 

under the NCHRP 1-52 study is added to the PMED software, and the 

automated technique must be upgraded to accommodate for the updated top-

down cracking model. 

• Both AC- and JPCP-rehabilitated pavement sections exhibited significant 

transverse cracking. Since thermal cracks and reflective cracks could not be 

distinguished from each other, the transverse cracking model was calibrated 

by adjusting reflection cracking model coefficients only for AC- and JPCP-

rehabilitated sections. Global factors were used for the thermal cracking 

model, and the nationally calibrated model did not predict thermal cracking 

for any of these sections. The transverse cracking model should be 

recalibrated once the thermal cracking model for new flexible pavements is 

conducted. Furthermore, the creep compliance test and the indirect tensile 

strength test should be conducted for typical AC overlay mixes to characterize 

low-temperature cracking behavior. 

• A primary component leading to the standard error of a PMED model is 

measurement errors associated with distress or smoothness measurements in 

the field (AASHTO, 2010). Prediction accuracy of the calibrated model often 

decreases due to high variability in the measured data. Distress measurements 

and data collection systems must be consistent for local calibration of the 
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PMED models. Since use of manual distress survey data yielded high 

variability across projects, especially in fatigue cracking data, the fatigue 

cracking model should be periodically recalibrated with updated performance 

data. 

• PMED considers that some cracking develops due to multiple mechanisms. 

Transverse cracks can happen due to low temperature or reflection, while 

alligator cracking is caused by fatigue bottom-up cracking and reflective 

cracking. To facilitate the calibration of all cracking models, the condition 

surveys conducted on sections used for PMED calibration must determine the 

extent to which each mechanism causes cracking by marking the exact crack 

locations to identify reflective cracks in the overlays and through coring to 

identify top-down and bottom-up cracking. 

• PMED estimates the accumulation of permanent deformation in each 

pavement layer due to truck traffic. To efficiently calibrate the rutting models 

for asphalt concrete layers and unbound granular foundation layers, the 

permanent deformation or rutting in each layer must be measured; surface 

rutting alone is insufficient for accurate calibration of all rutting models. 

• The automated technique developed in this study cannot calibrate parameters 

that require multiple simulations of the PMED software. For AC overlays, the 

β2r and β3r coefficients of the permanent deformation model and the thermal 

cracking model cannot be calibrated using this application. Wojtkiewicz et al. 

(2010) used the DAKOTA software and the Cygwin package to run PMED 

models numerous times outside the AASHTOWare environment to investigate 

the effect of variability in HMA mixes on pavement performance prediction. 

The automated calibrated technique developed in this study could be 

integrated into the DAKOTA and Cygwin package to automate PMED model 

calibrations that require multiple PMED simulation. 

• This study conducted the TOST to calibrate PMED models with an 

equivalence margin concept. Prior to this study, the TOST had not been used 
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for equivalence testing between AASHTOWare PMED software-predicted 

data and field-measured data. This study also utilized a heuristic method to 

determine the narrowest equivalence margin for the calibrated PMED models. 

Further research must be conducted to establish a realistic equivalence region 

for various distress types and models. PMED models then should be calibrated 

to achieve the equivalence margin. 

• The optimization technique employed in this study searches for a global 

optimum value for the calibration parameter for which the objective function 

(SSE) value is the smallest. While looking for the optimum model coefficient, 

unrealistic values for calibration parameters may be obtained, potentially 

minimizing the SSE but may not be valid when judged solely from an 

engineering point of view. Limited study has been conducted until now to 

identify lower and upper bounds of PMED model coefficients beyond realistic 

predictions. Further research is needed to establish typical bounds for these 

calibration parameters. 

• This study used the CG and L-BFGS optimization techniques to adjust PMED 

model parameters. Researchers previously have used GRG and GA 

optimization techniques for PMED calibration coefficients (Kim et al., 2011; 

Ayed & Tighe, 2015). Other robust optimization techniques, such as 

derivative-free methods and multi-objective and multi-constrained search 

strategies, may be implemented to determine most optimum possible 

calibration coefficients for the PMED models. 
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Appendix A: AASHTOWare Traffic Inputs 

Table A.1: Hourly Distribution Factors 

Hour 
Automatic Vehicle Class Stations 

CTQ1D1 0DT453 7XRME7 61ILJ3 91TFY5 AW9N83 CV64B3 F10VD5 9LON61 9Q9OK1 7HOM63 

0 1.55 2.25 2.03 1.17 1.65 1.69 1.47 1.30 0.79 1.07 1.94 

1 1.31 1.97 1.64 0.88 1.25 1.66 1.12 1.13 0.52 0.85 1.60 

2 1.19 1.88 1.78 0.81 1.28 1.78 1.06 1.23 0.46 0.80 1.56 

3 1.20 1.95 1.83 0.84 1.42 2.17 1.04 1.61 0.57 0.86 1.67 

4 1.35 2.09 2.11 1.11 1.58 2.95 1.17 2.19 1.24 1.29 1.83 

5 2.08 2.35 2.53 1.69 1.93 3.55 1.46 2.56 2.51 2.25 2.25 

6 3.36 2.63 3.17 2.72 2.74 4.27 3.02 3.41 5.29 4.40 2.93 

7 4.57 3.37 3.94 4.50 3.91 4.99 4.25 4.78 7.30 7.25 3.82 

8 5.68 4.37 5.38 5.32 5.43 6.09 5.48 5.76 5.48 6.65 5.08 

9 6.47 4.88 6.43 6.11 6.00 7.05 5.83 6.92 4.84 6.02 6.13 

10 7.02 5.08 6.44 6.53 6.26 7.11 6.30 7.35 4.82 6.12 6.39 

11 7.08 5.47 6.24 6.41 6.45 6.63 7.23 7.43 5.19 6.40 6.37 

12 6.87 5.99 6.36 6.40 6.30 6.31 7.71 7.10 5.53 6.65 6.33 

13 6.82 6.29 6.22 6.63 6.52 6.20 7.60 6.96 5.77 6.71 6.30 

14 6.71 6.26 6.07 6.97 6.60 5.69 7.27 6.66 6.30 7.10 6.19 

15 6.52 6.35 5.87 7.15 6.55 5.15 6.76 6.11 7.71 7.08 6.18 

16 6.01 6.38 5.58 7.18 6.40 4.86 7.00 5.68 8.55 6.79 5.98 

17 5.29 6.18 5.45 6.81 5.99 4.47 5.77 4.95 8.38 6.33 5.82 

18 4.57 5.63 4.91 5.63 5.21 3.89 4.63 4.20 5.69 4.47 5.26 

19 3.94 4.85 4.10 4.61 4.52 3.26 3.87 3.53 4.07 3.13 4.40 

20 3.24 4.28 3.60 3.69 4.04 3.00 3.35 2.92 3.33 2.56 3.74 

21 2.87 3.75 3.08 2.97 3.22 2.79 2.78 2.48 2.66 2.12 3.11 

22 2.42 3.06 2.70 2.23 2.63 2.43 2.10 2.00 1.79 1.70 2.73 

23 1.88 2.69 2.54 1.66 2.10 2.05 1.72 1.73 1.22 1.39 2.41 
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Table A.2: Vehicle Class Factors 

Class 
Automatic Vehicle Class Stations 

CTQ1D1 0DT453 7XRME7 61ILJ3 91TFY5 AW9N83 CV64B3 F10VD5 9LON61 9Q9OK1 7HOM63 

4 0.55 0.84 0.80 52.05 7.40 2.01 9.16 0.75 86.71 0.86 0.84 

5 4.27 2.92 5.42 10.85 10.17 3.57 5.31 5.60 2.89 12.12 5.59 

6 3.36 1.26 3.26 1.10 1.72 2.63 10.94 4.55 1.87 10.65 3.21 

7 0.34 0.81 0.55 2.49 1.16 0.19 0.33 0.48 2.40 1.58 0.78 

8 6.64 3.87 5.28 2.34 16.54 5.80 6.02 5.62 1.29 9.17 5.50 

9 79.07 77.45 74.90 1.76 57.49 78.41 64.91 77.01 1.82 62.34 72.53 

10 4.14 1.00 1.80 7.03 3.08 1.42 1.57 1.37 2.65 1.37 2.21 

11 0.49 6.27 5.53 21.19 0.86 5.43 0.25 3.66 0.34 1.35 6.98 

12 0.65 3.59 2.22 1.16 0.43 0.27 0.19 0.76 0.03 0.26 2.15 

13 0.49 1.99 0.25 0.05 1.15 0.28 1.32 0.20 0.01 0.29 0.21 

 

 
Table A.3: Monthly Adjustment Factors for AVC Station 0DT453 

Month Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

January 0.68 0.57 0.95 0.51 0.57 0.92 0.62 0.95 0.93 0.75 

February 0.64 0.58 0.99 0.59 0.61 0.96 0.86 0.93 0.93 0.79 

March 0.82 0.76 0.85 0.73 0.72 1.01 0.85 0.99 0.99 0.88 

April 0.86 0.86 0.97 0.81 0.91 1.03 1.06 1.07 1.08 0.93 

May 0.93 1.13 0.93 1.24 1.14 1.02 0.97 1.00 0.98 1.09 

June 1.29 1.50 1.00 1.61 1.38 1.03 1.33 0.99 0.99 1.19 

July 1.44 1.60 1.16 1.58 1.41 1.07 1.30 1.08 1.02 1.32 

August 1.27 1.28 1.07 1.27 1.30 1.03 1.08 0.93 1.04 1.26 

September 1.20 1.09 1.20 1.18 1.24 1.06 1.08 1.02 1.04 1.29 

October 1.00 1.07 1.02 1.09 1.02 1.01 0.94 0.99 1.03 1.19 

November 0.95 0.83 0.89 0.74 0.80 0.95 1.00 1.03 1.01 0.79 

December 0.92 0.71 0.98 0.65 0.90 0.91 0.91 1.02 0.95 0.52 
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Table A.4: Monthly Adjustment Factors for AVC Station 7XRME7 
Month Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

January 0.99 0.88 0.94 0.71 0.81 1.04 0.98 1.05 1.07 0.79 

February 1.03 0.82 0.79 0.62 1.05 1.03 0.90 1.06 1.02 0.66 

March 1.18 0.95 0.94 0.93 1.04 1.04 1.04 1.11 1.15 0.96 

April 1.16 1.15 1.68 0.96 1.29 1.15 1.30 1.11 1.22 1.13 

May 1.27 1.16 0.95 1.19 1.22 1.05 1.03 1.07 1.10 1.18 

June 1.03 1.29 1.21 1.46 1.39 1.07 1.12 1.05 0.99 1.67 

July 1.01 1.19 1.02 1.50 1.07 1.05 0.86 1.11 0.93 1.22 

August 0.86 1.11 1.03 1.28 0.99 1.00 0.94 1.01 0.87 0.85 

September 0.43 0.53 0.44 0.63 0.45 0.43 0.65 0.28 0.15 0.58 

October 1.12 1.13 1.01 1.12 1.09 1.11 1.02 1.19 1.32 1.48 

November 0.94 0.92 0.94 0.88 0.83 1.02 1.14 1.01 1.18 0.67 

December 0.99 0.88 1.05 0.73 0.77 1.00 1.02 0.94 1.01 0.79 

 

 
Table A.5: Monthly Adjustment Factors for AVC Station 61ILJ3 

Month Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

January 0.89 0.93 0.95 0.79 0.75 0.86 1.05 0.99 1.03 0.65 

February 0.84 0.87 0.94 0.78 0.72 0.89 1.04 1.01 0.91 0.60 

March 1.03 1.00 1.01 0.96 0.93 1.11 0.98 1.03 1.16 1.62 

April 1.06 1.01 1.03 1.04 1.03 1.19 0.92 1.02 1.14 1.25 

May 1.06 1.03 1.04 1.08 1.06 0.96 0.88 1.03 1.11 0.78 

June 1.06 1.05 1.09 1.11 1.03 0.95 0.93 0.96 0.95 0.98 

July 1.10 1.05 1.07 1.19 1.07 0.99 0.99 0.93 0.91 1.01 

August 0.99 1.00 1.02 1.09 1.33 1.05 0.97 0.96 0.97 0.81 

September 0.96 1.07 1.10 1.14 1.19 1.17 1.25 1.00 0.95 1.21 

October 1.00 1.05 1.04 1.08 1.03 1.11 1.07 1.01 1.00 0.79 

November 1.00 1.01 0.92 0.94 1.10 0.89 0.96 1.02 0.97 1.28 

December 1.02 0.96 0.79 0.82 0.77 0.82 0.95 1.02 0.90 1.02 
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Table A.6: Monthly Adjustment Factors for AVC Station 91TFY5 
Month Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

January 1.06 1.28 1.36 0.36 1.02 1.35 1.16 1.24 1.06 0.82 

February 1.18 1.24 1.42 0.39 0.94 1.33 1.05 1.23 0.93 0.77 

March 1.58 1.21 1.59 0.45 0.94 1.02 1.87 1.16 1.17 1.04 

April 1.70 1.15 1.52 0.45 0.84 0.90 1.92 1.02 1.70 1.31 

May 1.25 1.06 0.81 0.43 0.67 0.90 0.73 0.95 0.56 0.89 

June 1.22 1.18 0.76 0.45 0.72 0.89 0.59 0.89 0.57 1.04 

July 0.84 1.15 0.77 0.44 0.57 0.85 0.68 0.90 0.45 1.09 

August 0.43 1.02 0.58 0.37 0.52 0.86 0.65 0.72 0.55 1.42 

September 0.66 1.02 0.55 0.40 0.57 0.93 0.64 0.91 0.47 1.27 

October 0.87 1.14 0.76 0.48 0.68 0.92 0.67 0.91 0.71 1.35 

November 1.10 0.16 0.33 7.49 4.16 0.05 0.32 0.54 2.34 0.26 

December 0.12 0.38 1.56 0.30 0.37 2.01 1.74 1.54 1.48 0.74 

 

 
Table A.7: Monthly Adjustment Factors for AVC Station AW9N83 

Month Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

January 1.68 0.77 0.56 0.95 0.57 0.60 0.52 0.71 0.82 0.40 

February 2.03 0.86 0.66 0.32 0.70 0.72 0.57 0.98 1.88 0.53 

March 2.51 1.44 0.67 0.76 0.67 1.05 0.72 1.13 1.37 0.00 

April 0.87 2.71 1.73 3.03 2.07 1.83 1.65 1.38 2.19 2.13 

May 1.46 2.02 1.49 1.14 2.02 1.34 1.83 1.35 1.64 1.46 

June 0.93 0.90 1.15 0.30 0.98 1.27 1.14 1.32 0.77 1.81 

July 0.67 0.90 1.31 1.26 1.31 1.38 1.46 1.30 0.91 2.04 

August 0.51 0.79 1.75 1.19 1.15 1.31 1.66 1.34 0.75 1.61 

September 0.15 0.41 0.82 0.63 0.70 0.66 0.60 0.66 0.62 0.37 

October 0.23 0.48 0.68 0.91 0.92 0.71 0.73 0.69 0.36 0.37 

November 0.36 0.36 0.70 0.76 0.67 0.64 0.70 0.64 0.48 0.13 

December 0.61 0.36 0.48 0.76 0.24 0.49 0.41 0.50 0.22 1.17 
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Table A.8: Monthly Adjustment Factors for AVC Station CTQ1D1 
Month Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

January 0.54 0.91 0.68 0.97 0.66 0.91 1.05 1.23 0.88 0.58 

February 0.68 0.92 0.75 0.72 0.58 0.99 1.16 1.22 0.91 0.56 

March 0.93 0.98 1.01 1.11 0.76 1.07 1.42 1.26 1.05 0.80 

April 0.67 0.95 0.88 1.18 0.86 1.00 1.14 0.74 0.91 0.64 

May 0.64 1.05 1.12 1.03 0.85 1.00 1.39 0.60 1.03 0.77 

June 0.83 1.01 1.35 1.59 0.98 1.06 1.15 0.91 1.00 1.26 

July 0.78 0.99 1.07 1.47 0.97 1.05 0.96 0.99 0.95 1.26 

August 0.54 0.90 0.92 1.54 0.84 1.02 1.02 1.27 1.05 1.60 

September 1.67 1.07 1.09 1.13 1.45 0.99 0.72 0.82 1.18 1.29 

October 2.13 1.21 1.14 0.37 1.51 1.02 0.61 1.15 1.03 1.09 

November 1.38 0.99 1.06 0.53 1.35 0.96 0.68 0.99 1.00 1.04 

December 1.22 1.03 0.93 0.37 1.18 0.93 0.71 0.82 1.00 1.12 

 

 
Table A.9: Monthly Adjustment Factors for AVC Station CV64B3 

Month Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

January 2.17 1.02 0.70 0.34 0.79 0.97 2.30 1.81 2.92 1.96 

February 2.13 0.90 0.84 0.59 0.83 0.90 0.86 1.75 1.67 1.91 

March 1.33 0.95 1.00 1.10 1.01 1.08 0.97 1.46 0.75 1.41 

April 0.83 1.32 1.05 1.13 1.02 1.19 1.27 1.25 0.56 1.55 

May 0.74 1.28 1.09 0.85 0.91 1.12 1.44 0.68 1.46 1.02 

June 0.56 1.00 1.05 1.31 0.77 1.10 0.61 0.16 0.61 0.06 

July 0.51 0.86 1.05 0.96 1.11 0.99 0.65 0.18 0.31 0.08 

August 0.85 1.02 1.17 0.88 1.37 1.04 0.72 0.29 0.30 0.07 

September 0.84 1.12 1.17 1.89 1.09 0.92 1.02 0.62 0.00 0.11 

October 0.75 1.00 1.21 1.14 1.39 1.04 0.94 0.79 0.16 0.58 

November 0.86 0.84 0.89 0.64 0.97 0.85 0.77 1.51 1.48 1.93 

December 0.43 0.71 0.77 1.18 0.74 0.80 0.44 1.50 1.77 1.32 
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Table A.10: Monthly Adjustment Factors for AVC Station F10VD5 
Month Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

January 0.55 0.86 1.02 0.56 0.89 0.88 1.81 0.91 1.15 0.93 

February 0.63 0.88 0.84 0.36 0.87 0.92 1.14 0.94 1.03 0.98 

March 1.06 0.97 0.92 0.85 0.93 0.97 1.14 1.00 0.91 0.56 

April 1.05 1.11 0.92 0.91 1.16 1.06 0.85 1.19 0.98 1.00 

May 0.99 1.05 1.09 0.62 1.11 1.04 0.94 1.07 0.90 1.42 

June 1.06 0.98 1.11 0.71 1.15 1.07 1.04 1.03 1.06 1.49 

July 1.22 0.98 1.01 1.08 1.11 1.04 0.76 1.05 1.14 0.88 

August 1.19 0.97 1.07 0.94 1.04 1.00 1.07 0.96 0.96 1.47 

September 1.07 1.07 1.20 1.08 1.05 1.02 0.88 1.00 1.04 1.11 

October 1.24 1.17 1.17 0.99 0.99 1.10 0.99 1.05 1.04 0.92 

November 1.11 0.99 0.91 3.32 0.84 0.93 0.72 0.88 0.85 0.77 

December 0.84 0.96 0.75 0.58 0.87 0.97 0.66 0.93 0.95 0.47 

 

 
Table A.11: Monthly Adjustment Factors for AVC Station 9LON61 

Month Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

January 0.96 0.97 0.84 0.77 0.80 0.95 1.01 0.94 0.71 0.70 

February 0.96 0.93 0.84 0.76 0.80 0.92 1.00 0.96 0.72 0.80 

March 0.97 0.95 0.86 0.82 0.84 0.94 0.99 0.98 0.92 0.83 

April 1.03 0.99 1.01 1.04 1.06 0.98 0.99 0.90 1.05 1.11 

May 0.97 0.97 0.91 0.88 0.90 0.94 0.98 0.97 0.94 0.87 

June 1.03 1.02 1.10 1.18 1.22 1.06 1.02 1.07 1.13 1.03 

July 1.02 1.03 1.10 1.17 1.18 1.06 1.02 1.09 1.11 1.00 

August 1.02 1.04 1.10 1.16 1.14 1.04 1.01 1.07 1.11 0.99 

September 1.01 1.05 1.10 1.15 1.12 1.06 1.02 1.08 1.14 1.00 

October 1.01 1.05 1.10 1.14 1.11 1.05 1.01 1.08 1.13 1.09 

November 1.01 1.04 1.09 1.11 1.08 1.04 1.00 1.04 1.11 1.13 

December 1.01 0.94 0.94 0.81 0.75 0.95 0.96 0.80 0.93 1.45 
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Table A.12: Monthly Adjustment Factors for AVC Station 9Q9OK1 
Month Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

January 0.99 1.18 1.01 0.83 0.91 1.06 0.92 0.94 1.02 1.18 

February 1.23 1.39 1.18 1.03 1.14 1.32 1.09 1.21 1.21 1.22 

March 1.41 1.47 1.41 1.64 1.35 1.43 1.33 1.37 1.40 1.36 

April 1.50 1.75 1.45 1.41 1.47 1.43 1.32 1.42 1.43 1.54 

May 1.38 1.68 1.63 1.55 1.54 1.44 1.46 1.58 1.32 1.33 

June 1.63 1.42 1.76 1.64 1.75 1.56 1.72 1.59 1.66 1.31 

July 1.31 1.08 1.24 1.25 1.31 1.21 1.26 1.25 1.39 0.93 

August 0.60 0.43 0.51 0.49 0.57 0.56 0.70 0.64 0.56 0.40 

September 0.49 0.46 0.52 0.57 0.59 0.57 0.67 0.59 0.67 0.38 

October 0.54 0.45 0.55 0.60 0.55 0.57 0.59 0.60 0.48 0.36 

November 0.48 0.37 0.42 0.61 0.46 0.46 0.51 0.47 0.47 0.70 

December 0.42 0.33 0.31 0.37 0.37 0.39 0.42 0.34 0.40 1.27 

 

 
Table A.13: Monthly Adjustment Factors for AVC Station 7HOM63 

Month Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

January 0.89 0.77 0.91 0.80 0.74 0.97 1.14 1.04 1.08 0.83 

February 1.08 0.83 0.80 1.50 1.00 0.96 1.65 1.61 1.12 0.59 

March 1.11 0.85 0.92 1.54 1.01 0.97 1.46 1.37 1.23 0.95 

April 1.09 1.01 1.52 1.78 1.21 1.05 1.68 1.41 1.24 1.10 

May 1.11 1.01 0.88 0.74 1.07 0.98 0.76 0.76 1.03 1.28 

June 0.97 1.22 1.20 1.56 1.31 1.02 1.19 1.08 1.01 1.80 

July 0.87 1.05 0.94 0.97 0.94 0.99 0.64 0.80 0.87 1.32 

August 0.79 1.04 1.06 0.77 0.91 0.97 0.71 0.75 0.84 1.03 

September 0.96 1.29 1.09 0.82 1.04 1.12 0.92 0.83 0.96 0.79 

October 1.04 1.11 0.93 0.64 0.97 1.02 0.69 0.81 0.92 1.00 

November 1.07 0.93 0.97 0.44 1.01 0.98 0.60 0.75 0.86 0.67 

December 1.04 0.88 0.78 0.44 0.79 0.96 0.56 0.80 0.83 0.63 
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Table A.14: Axle group per vehicle for WIM station 2WOA86 
Axle Type Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

Single 2.00 2.08 1.57 0.00 2.35 1.75 2.34 5.00 4.00 5.63 

Tandem 0.00 0.46 1.43 0.00 1.47 3.24 2.47 0.00 2.00 2.75 

Tridem 0.00 0.04 0.00 0.00 0.00 0.01 1.28 0.00 0.00 2.25 

Quad 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

 
Table A.15: Axle group per vehicle for WIM station 3MXC22 

Axle Type Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

Single 1.10 2.20 1.15 2.00 2.26 1.46 2.17 5.00 4.04 0.00 

Tandem 0.57 0.44 1.85 2.00 1.57 3.54 2.34 0.00 1.96 0.00 

Tridem 0.00 0.23 0.00 0.00 0.00 0.00 1.54 0.00 0.00 0.00 

Quad 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

 
Table A.16: Axle group per vehicle for WIM station 4LGSU3 

Axle Type Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

Single 1.10 2.20 1.15 2.00 2.26 1.46 2.17 5.00 4.04 0.00 

Tandem 0.57 0.44 1.85 2.00 1.57 3.54 2.34 0.00 1.96 0.00 

Tridem 0.00 0.23 0.00 0.00 0.00 0.00 1.54 0.00 0.00 0.00 

Quad 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

 
Table A.17: Axle group per vehicle for WIM station 9M4PS3 

Axle Type Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

Single 1.76 2.21 1.16 1.67 2.00 1.36 2.06 5.00 4.06 0.00 

Tandem 0.49 0.52 1.84 1.33 1.01 3.63 2.72 0.00 1.94 0.00 

Tridem 0.00 0.08 0.00 0.50 0.00 0.00 1.33 0.00 0.00 0.00 

Quad 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A.18: Axle group per vehicle for WIM station 20PUF5 
Axle Type Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

Single 4.64 2.05 1.25 4.00 2.13 1.56 3.58 0.00 4.00 7.00 

Tandem 0.36 1.01 1.75 0.00 1.83 3.44 2.22 0.00 2.00 1.33 

Tridem 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.50 

Quad 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 

 

 
Table A.19: Axle group per vehicle for WIM station 9ORQP1 

Axle Type Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

Single 2.075 2.11 1.289 1.789 2.294 1.875 2.33 5 4 0 

Tandem 0.402 0.345 1.715 0.684 1.507 3.089 1.961 0 2 0 

Tridem 0 0.282 0 0.632 0 0.036 1.589 0 0 0 

Quad 0 0 0 1.263 0 0 0.235 0 0 0 

 

 
Table A.20: Axle group per vehicle for WIM station 9Q9OK1 

Axle Type Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

Single 4.607 2.019 1.301 1.634 2.327 1.358 1.7 5 6 7 

Tandem 1.607 0.345 1.699 0.295 1.436 3.661 2 0 0 0 

Tridem 0 0.01 0 1.524 0 0.003 1.9 0 0 0 

Quad 0 0 0 0.984 0 0 0.4 0 0 0 

 

 
Table A.21: Axle group per vehicle for WIM station BWGAA6 

Axle Type Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

Single 2.494 2.146 1.455 2 2.297 1.708 2.857 5 1.588 0.772 

Tandem 0.501 0.659 1.545 2 1.576 3.269 2 0 4.412 0.913 

Tridem 0 0.016 0 0 0 0.023 1 0 0 0 

Quad 0 0 0 0 0 0 0.571 0 0 0 
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Table A.22: Axle group per vehicle for WIM station DVMSP3 
Axle Type Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

Single 1.877 2.179 1.45 2.182 2.275 1.529 2.264 5 4.378 4.412 

Tandem 0.359 0.582 1.549 1.454 1.543 3.465 2.189 0 1.623 3.422 

Tridem 0.01 0.013 0 0.545 0 0.006 1.415 0 0 0 

Quad 0 0 0 0 0 0 0.226 0 0 0 

 

 
Table A.23: Axle group per vehicle for WIM station F07WC7 

Axle Type Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 

Single 0 1.943 1.273 1.727 2.33 1.185 1.92 5 4 6.3 

Tandem 0 0.582 1.727 0.363 1.4 3.801 2.16 0 2 1 

Tridem 0 0 0 1.909 0 0.014 2.04 0 0 0 

Quad 0 0 0 0 0 0 0 0 0 0 
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Appendix B: Site-Specific Material Properties 

Table B.1: Site-specific asphalt properties for AC over JPCP sections 

Project Name Pavement Layer Thickness 
(in) 

Binder 
Grade 

Binder Content 
(By Volume) 

Gradation (% Passing) 
3/4˝ 3/8˝ #4 #200 

K-7823-01 

Overlay-Surface 
Course 1.5 PG 70-22 10.70 100 77 60 6 

Overlay-Binder 
Course 2.5 PG 70-22 9.60 100 82 69 5 

KA-2835-01 

Overlay- Surface 
Course 1.5 PG 70-22 14.40 100 99 82 5 

Overlay - Binder 
Course 2.5 PG 70-22 9.90 98 83 63 5 

KA-2836-01 
Surface Course 1.5 PG 70-22 14.00 100 99 82 5 
Binder Course 2.5 PG 70-22 11.60 98 83 63 5 

KA-3282-01 
UBAS 0.625 PG 70-28 11.95 100 75 37 4 

Overlay Course 3.0 PG 76-22 10.67 100 83 62 4 
KA-2669-01 Overlay Course 3.0 PG 70-22 11.30 100 88 76 5 

KA-4136-01 
UBAS 0.625 PG 70-28 11.70 100 97 51 5 

Overlay 3.0 PG 70-22 10.30 100 89 78 4 
KA-1950-01 Overlay Course 3.0 PG 70-28 12.70 100 88 77 5 
KA-1951-01 Overlay Course 3.0 PG 70-28 12.70 100 88 77 5 
KA-1931-01 Overlay Course 3.0 PG 70-28 11.90 100 88 77 5 
KA-2681-01 Overlay Course 3.0 PG 70-28 10.20 100 88 66 4 
KA-2682-01 Overlay Course 3.0 PG 70-28 10.20 100 88 66 4 

KA-4036-01 
Surface Course 1.5 PG 70-22 12.70 100 86 72 5 
Binder Course 1.5 PG 70-28 10.80 100 85 62 5 

KA-3848-01 
UBAS 0.625 PG 70-28 13.20 100 99 52 4 

Overlay course 2.5 PG 70-28 11.10 100 84 59 4 
RCI course 1.0 PG 70-28 15.0 100 100 98 5 

KA-0378-01(2) 
UBAS 0.58 PG 70-28 10.70 100 98 45 5 

Overlay course 2.0 PG 70-28 9.90 100 83 63 4 
RCI course 1.0 PG 70-28 16.90 100 100 97 2 

KA-0378-01(1) 
UBAS 0.58 PG 70-28 10.70 100 98 45 5 

Overlay course 2.0 PG 70-28 9.90 100 83 63 4 
RCI course 1.0 PG 70-28 16.90 100 100 97 2 

KA-4236-01 
Overlay course 3.5 PG 70-22 10.70 100 85 65 5 

RCI course 1.0 PG 70-28 14.80 100 100 94 4 

KA-2001-01 
UBAS 0.625 PG 64-28 10.80 100 98 47 4 

Overlay course 2.0 PG 70-28 11.50 100 86 65 4 
RCI course 1.0 PG 70-28 15.80 100 100 99 5 

KA-3006-01 Overlay course 2.0 PG 70-28 10.10 100 85 37 5 
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Table B.2: Site-specific asphalt properties for AC over AC sections 

Project Name Pavement Layer Thickness 
(in) 

Binder 
Grade 

Binder 
Content (By 

Volume) 

Gradation (% Passing) 

3/4˝ 3/8˝ #4 #200 

KA-2628-01 

Existing AC-surface course 2.0 PG 76-28 9.35 100 70 61 4.6 
Existing AC-base course 8.2 PG 70-28 7.45 98 59 32 2 

Overlay course 3.0 PG 70-28 10.33 100 87 72 4.6 
UBAS 0.625 PG 70-28 11.00 100 88 34 4.1 

KA-9466-01 

Existing AC surface course milled off 
Existing AC-binder course 7 AC 10 8.85 100 71 63 7 
Existing AC-base course 9 AC 10 8.43 98 92 80 11 
Overlay- surface course 1.5 PG 76-28 10.85 100 96 62 4.2 
Overlay - binder course 1.5 PG 76-28 9.35 100 70 61 4.6 

KA-4013-01 

Existing AC-surface course 1.5 PG 64-28 11.2 100 91 55 4.1 
Existing AC-binder course 2.5 PG 64-28 9.13 98 80 54 4.6 
Existing AC-base course 5.5 PG 64-22 9.53 97 82 70 4.6 

Overlay course 1.5 PG 58-28 12.96 100 87 69 3.4 

KA-1436-01 
Existing AC-surface course 1.5 AC 10 9.76 100 93 51 5.4 

Existing AC-base course 8.5 AC 10 10.22 100 67 43 6 
Overlay Course 1.5 PG 58-28 11.89 100 88 73 5.1 

KA-2188-01 

Existing AC-surface course 2.5 PG 64-28 8.26 100 87 67 6 
Existing AC-base course 11.5 PG 58-28 9.00 100 68 41 3.4 
Overlay- surface course 4 PG 64-28 11.62 100 87 74 3.1 
Overlay - binder course 2 PG 58-28 11.70 100 86 72 3.4 

KA-0813-01 
Existing AC-surface course 1.5 PG 58-28 11.24 100 98 60 2.8 

Existing AC-base course 7.1 PG 58-28 11.60 99 79 53 3 
Overlay Course 1.5 PG 64-28 11.50 100 87 76 4.3 

K-0657-01 
Existing AC-surface course 1.0 AC 10 11.19 100 95 53 5 

Existing AC-base course 10.5 AC 10 6.71 99 71 39 6 
Overlay Course 1.5 PG 76-22 13.66 100 76 31 4 

KA-0811-01 

Existing AC-surface course 1.0 PG 70-28 8.52 100 95 54 6 
Existing AC-binder course 3.0 PG 58-28 7.99 100 68 42 5.2 
Existing AC-base course 2.5 PG 52-28 7.98 100 68 42 5.2 

Overlay course 1.0 PG 64-22 10.98 100 97 72 4 

KA-0310-01 

Existing AC-surface course 1.0 PG 58-28 12.20 100 100 68 4 
Existing AC-binder course 4.0 PG 58-28 10.30 100 74 42 3 
Existing AC-base course 6.0 PG 52-28 9.80 100 73 39 4 

Overlay course 2.0 PG 70-28 11.19 100 85 67 2.1 

KA-4192-01 

UBAS 0.5 PG 70-28 11.90 100 99 55 4.7 
Existing AC-surface course 1.5 PG 64-28 11.11 100 98 70 4.6 
Existing AC-binder course 2.5 PG 64-28 9.99 97 83 64 5.3 
Existing AC-base course 4 PG 64-22 10.01 98 84 63 3.5 

Overlay course 1.5 PG 64-28 11.58 100 86 73 4.9 
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KA-2941-01 

Existing AC-surface course 1.5 PG 64-28 11.61 100 97 77 4 
Existing AC-binder course 2.5 PG 64-28 10.24 97 83 64 5.3 
Existing AC-base course 8.0 PG 64-22 9.24 98 83 63 2.6 

Overlay course 1.5 PG 58-28 11.75 100 87 75 5 

KA-2923-01 
Existing AC-surface course 2.0 PG 64-28 11.41 100 98 64 3.2 

Existing AC-base course 5.5 PG 58-28 11.44 100 67 45 3 
Overlay Course 1.5 PG 70-28 11.63 100 86 67 4.3 

KA-8431-01 
Existing AC-surface course 1.0 AC 20 9.42 100 85 71 5 

Existing AC-base course 1.0 AC 10 9.86 99 69 42 3.7 
Overlay Course 13.0 PG 76-22 10.71 100 95 67 4.6 

KA-1480-01 
Existing AC-surface course 1.5 AC 10 10.29 100 91 53 5 

Existing AC-base course 8.5 AC 20 8.95 100 72 40 3 
Overlay course 1.5 PG 58-28 11.07 100 88 74 5.1 

K-7756-01 
Existing AC-surface course 1.0 AC 10 11.32 100 98 55 4.5 

Existing AC-base course 7.0 AC 10 9.3 100 81 64 5.8 
Overlay course 2.0 PG 64-28 9.89 100 87 57 3.1 

KA-1460-01 

Existing AC-surface course 1.5 AC 10 11.66 100 95 54 5.8 
Existing AC- base course 7.0 AC 10 10.67 98 84 63 3.5 

First overlay action 2.0 PG 64-28 10.43 100 84 50 3 
Second overlay action 1.5 PG 58-28 11.81 100 89 78 5 

KA-2200-01 

Existing UBAS Existing UBAS milled off 
Existing AC-surface course Existing AC surface course milled off 
Existing AC-binder course 3.0 PG 64-28 9.7 99 64 39 3.4 
Existing AC-base course 6.0 PG 58-28 9.8 99 64 39 3.4 
Overlay- surface course 3.0 PG 58-28 10.36 100 88 71 4.9 
Overlay - base course 4.0 PG 58-28 10.08 97 80 65 4.1 

KA-2204-01 

Existing AC-surface course Existing AC surface course milled off 
Existing AC-binder course Existing AC binder course milled off 
Existing AC-base course 4.0 PG 58-28 9.8 99 64 39 3.4 

Overlay course 7.0 PG 58-28 10.36 100 88 71 4.9 

KA-2966-01 
Existing AC-surface course 1.0 AC 10 9.84 100 99 54 7 

Existing AC-base course 9.0 AC 10 9.98 100 84 39 2.7 
Overlay course 1.5 PG 70-28 11.43 100 89 77 3.4 

KA-2505-01 
Existing AC-surface course Existing AC surface course milled off 

Existing AC-base course 6.3 PG 64-22 8.28 100 67 40 3.8 
Overlay course 2.0 PG 58-28 11.20 100 83 68 4.9 

KA-1444-01(1) 

Existing AC-surface course Existing AC surface course milled off 
Existing AC-base course 5.0 AC 10 10.1 100 67 43 6 

First overlay action 1.5 AC 10 9.8 100 93 51 5.4 
Second overlay action 1.5 PG 58-28 11.0 100 88 76 4.7 

 

 



283 

KA-1444-01(2) 

Existing AC-surface course Existing AC surface course milled off 
Existing AC-base course 5.0 AC 10 10.1 100 67 43 6 

First overlay action 1.5 AC 10 9.8 100 93 51 5.4 
Second overlay action 1.5 PG 58-28 11.0 100 88 76 4.7 

KA-3674-01 

Existing AC-surface course 1.5 PG 64-28 11.71 100 96 64 5.4 
Existing AC-binder course 2.5 PG 64-28 10.01 100 80 63 5.9 
Existing AC-base course 8.0 PG 64-22 8.91 100 80 63 5.9 

Overlay course 1.5 PG 58-28 16.78 100 89 73 4.7 

K-9364-01 

Existing AC-surface course 1.5 PG 58-28 8.92 100 85 71 6 
Existing AC-base course 3.5 PG 52-28 7.73 100 70 39 5.5 
Overlay- surface course 1.0 PG 64-22 9.42 100 87 68 4 
Overlay - binder course 1.0 PG 64-22 9.97 100 85 70 3.9 

KA-3496-01 

Existing AC-surface course 1.0 PG 70-28 10.47 100 97 59 3.5 
Existing AC-binder course 1.0 PG 70-28 9.1 98 82 53 3.6 
Existing AC-base course 5.5 PG 58-28 9.6 98 82 53 3.6 

Overlay course 1.5 PG 70-28 9.95 100 87 63 4 
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Table B.3: Site-specific PCC properties for AC over JPCP sections 

Project Name PCC thickness 
(inch) 

Cementitious 
content (lb./yd3) 

Water-cement 
ratio 

JPCP joint 
spacing (feet) 

JPCP dowel 
diameter (inch) 

K-7823-01 9 623 0.46 15 1.5 

KA-2669-01 11 521 0.44 15 1.375 

KA-2835-01 12 521 0.44 15 1.5 

KA-2836-01 12 521 0.43 15 1.5 

KA-3282-01 10 620 0.49 20 1.25 

KA-4136-01 10.5 620 0.49 30 1.375 

KA-1931-01 9 620 0.46 15 1.25 

KA-1950-01 10 620 0.43 15 1.25 

KA-1951-01 10 620 0.42 15 1.25 

KA-2681-01 12 545 0.45 15 1.25 

KA-2682-01 9.5 545 0.45 15 1.25 

KA-4036-01 10 565 0.45 15 1.25 

KA-3848-01 9 592 0.46 15 1.125 

KA-0378-01(1) 9 639 0.44 15 1.125 

KA-0378-01(2) 10 620 0.43 15 1.125 

KA-2001-01 9 620 0.44 15 1.125 

KA-4236-01 11 545 0.44 15 1.375 

KA-3006-01 9 620 0.49 15 1.125 
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Table B.4: Site-specific subgrade soil inputs for AC over AC sections 

Project Name County Soil Texture Soil Type 
(Unified) 

Resilient 
Modulus 

(psi) 

Gradation (% Passing) Atterberg Limits 

#4 Sieve #10 
Sieve 

#40 
Sieve 

#200 
Sieve 

Liquid 
Limit 

Plastic 
Limit 

KA-0310-01 Osage Silty clay loam -  75-95 55-95 55-85 50-80 35-50 15-25 

K-9364-01 Jefferson Silty clay loam -  85-100 85-100 85-100 80-95 25-45 11-23 

KA-2188-01 Republic Silty clay, silty clay 
loam; silt & clay CH and CL  100 100 - 75-90 63 39 

KA-0813-01 Washington 

Silty clay loam, clay 
loam, silt, silty clay, 

sandy clay loam, sandy 
clay & loam 

Mostly CL and CH; 
Some CL-ML & SC  85-100 70-100 70-95 70-95 40-60 20-35 

KA-9466-01 Saline 

Silty clay loam, clay 
loam, sandy clay loam; 
silty clay, silt, clay and 

loam 

Mostly CL; some CH; 
CL-ML & SC-SM 3100 95-100 90-100 85-100 60-90 20-35 5-15 

KA-2628-01 Saline Silty clay loam, clay 
loam, sandy clay loam Mostly CL; some CH 3100 100 100 95-100 85-100 50-75 30-45 

KA-2923-01 McPherson Silty clay, Silty clay 
loam; silt & clay CH and CL  100 100 90-100 85-95 45-70 20-40 

KA-4013-01 Osborne Silt, silty clay loam, silty 
clay, silt loam. 

Mostly CL and CH; 
Some CL-ML & SC  100 95-100 85-100 75-95 52 29 

KA-1436-01 Cheyenne 
Loam, clay loam, sandy 
clay loam, silt loam, fine 

silt loam & find sand 

CL-ML, CL, SC, SC-
SM; some ML, SC, SM, 

GC 
 80-100 75-100 50-95 35-85 20-40 5-15 

KA-1444-01(1) Phillips Silt, silty clay loam; 
loam and clay loam CL, CL-ML, CH  100 100 90-100 65-90 20-35 4-19 

KA-1444-01(2) Phillips Silt, silty clay loam; 
loam and clay loam CL, CL-ML, CH  100 100 90-100 65-90 20-35 4-19 

KA-2505-01 Rooks Silt, silty clay loam; fine 
silt CL-ML, CL 3500 100 95-100 80-100 55-90 20-40 3-20 

KA-2966-01 Ellis 
Silt, silty clay loam, silty 
clay; gravelly clay loam 

& fine silt 

CL, ML, CH; some CL-
ML, ML, SC  70-100 75-95 65-95 60-90 39 21 

KA-3674-01 Norton Silt, silty clay loam CL and CH 3600 100 100 95-100 90-100 40-55 20-30 
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K-0657-01 Bourbon Silty clay loam & silty 
clay 

CH, CL; some GC & 
MH  100 96-100 96-100 80-99 37-70 15-40 

KA-0811-01 Montgomery Loam, silt & silty clay 
loam CL, CH, and some SC 3500 95-100 95-100 90-100 80-98 37-65 15-35 

K-7756-01 Chautauqua Silty clay loam, silt & 
silty clay CL, CH; some CL-ML  100 100 95-100 90-100 56 30 

KA-2200-01 Allen Silt, silty clay loam, silty 
clay 

CH, CL; some GC & 
CL-ML  100 95-100 95-100 90-100 50-65 30-45 

KA-2204-01 Anderson Silt, silty clay loam, 
some silty clay 

CL, CH; some SC, GC & 
CL-ML  100 100 90-100 85-98 37-65 15-33 

KA-2941-01 Butler 

Silty clay loam, silt; 
isolated gravelly silty 
clay & channery silty 

clay 

CH & CL; some ML and 
isolated MH & CL-ML 2600 100 100 95-100 95-100 56 33 

KA-4192-01 Butler 
Mostly silt, some clay, 
silty clay loam and silty 

clay 

Mostly CL & CH; some 
CL-ML, ML & SC, GC, 

SP-SC & GP-GC 
2600 20-80 16-76 16-70 16-66 46 25 

KA-1460-01 Cowley 

Silty clay loam, silty 
clay, silt; isolated 

gravelly & channery silty 
clay, clay loam and clay 

Mostly CL & CH with 
isolated MH, ML, CL-
ML, SC, GC, SP-SC & 

GP-GC 

2600 95-100 95-100 65-100 45-80 32-52 11-25 

KA-3496-01 Sedgwick 

Silty clay loam, silty 
clay, silt, isolated loam; 
parachannery silty clay 
& parachannery silty 

silty clay loam 

CL & CH  100 100 95-100 90-100 50-65 25-40 

K-8431-01 Seward 

Clay loam, silty clay 
loam, silty clay; some 

clay, loam, fine silt and 
silt loam  

Mostly CL, SC & CH; 
some SC-SM, CL-ML, 

SM & ML 
4700 100 100 100 90-100 30-45 10-25 

KA-1480-01 Clark 

Clay loam, silt, silty clay 
loam; gravelly loam, fine 

silt loam, sandy clay 
loam  

CL, CL-ML, ML & SC; 
some CH & SC-SM; 
isolated SM & MH 

 75-100 55-100 50-95 36-85 20-40 4-20 
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Table B.5: Site-specific subgrade soil inputs for AC over JPCP sections 

Project Name County Soil Type 
Resilient 
Modulus  

(psi) 

Gradation (% Passing) Atterberg Limits 

#4 
Sieve 

#10 
Sieve 

#40 
Sieve 

#200 
Sieve 

Liquid 
Limit 

Plastic 
Limit 

K-7823-01 Johnson A-7-6 2600 100 100 98.5 97.5 60 37.5 
KA-2669-01 Shawnee A-6 3100 100 99 69 18 33 16 
KA-2835-01 Wabaunsee A-7-6 2600 100 100 97.5 90 55 33 
KA-2836-01 Shawnee A-7-6 3100 100 100 99 35 45 22 
KA-3282-01 Wyandotte A-7-6 3300 100 100 95 80 51 30 
KA-4136-01 Shawnee A-7-6 3100 100 100 99 35 45 22 
KA-1931-01 Cloud A-7-6 3000 100 100 - 35 46 24 
KA-1950-01 Marion A-7-6 2600 88 85 83 80 50 28 
KA-1951-01 Chase A-7-6 2700 100 100 100 95 38 16 
KA-2681-01 Marion A-7-6 2600 100 100 97.5 90 60 40 
KA-2682-01 Chase A-7-6 2700 100 100 100 96 38 16 
KA-4036-01 Sherman A-6 4100 100 100 100 92.5 38 18 
KA-3848-01 Labette A-7-6 2700 99 98 98 81.5 50 29 

KA-0378-01(1) Harvey A-6 2700 100 100 97.5 92 39 18 
KA-0378-01(2) Harvey A-6 2700 100 100 97.5 92 39 18 

KA-2001-01 Butler A-6 4000 100 100 97.5 92 39 18 
KA-4236-01 Harvey A-7-6 3500 100 100 97.5 95 50 30 
KA-3006-01 Finney A-6 3200 100 100 100 95 40 21 
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Appendix C: Backcalculated Modulus 

 
Figure C.1: Backcalculated moduli for the pavement section KA-4013-01 

 

 

 
Figure C.2: Backcalculated moduli for the pavement section KA-3674-01 
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Figure C.3: Backcalculated moduli for the pavement section KA-1436-01 

 

 

 
Figure C.4: Backcalculated moduli for the pavement section KA-0310-01 
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Figure C.5: Backcalculated moduli for the pavement section KA-9364-01 

 

 

 
Figure C.6: Backcalculated moduli for the pavement section KA-0813-01 
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Figure C.7: Backcalculated moduli for the pavement section KA-1444-01(1) 

 

 

 
Figure C.8: Backcalculated moduli for the pavement section KA-1444-01(2) 
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Figure C.9: Backcalculated moduli for the pavement section KA-2200-01 

 

 

 
Figure C.10: Backcalculated moduli for the pavement section KA-2204-01 
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Figure C.11: Backcalculated moduli for the pavement section KA-0811-01 

 

 

 
Figure C.12: Backcalculated moduli for the pavement section KA-2941-01 
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Figure C.13: Backcalculated moduli for the pavement section KA-4192-01 

 

 

 
Figure C.14: Backcalculated moduli for the pavement section KA-3496-01 
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Figure C.15: Backcalculated moduli for the pavement section KA-1460-01 

 

 

 
Figure C.16: Backcalculated moduli for the pavement section KA-1480-01 
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